期刊文献+

Surface chemistry considerations of gangue dissolved species in the bastnaesite flotation system 被引量:2

原文传递
导出
摘要 Inefficient flotation of bastnaesite remains a challenge in the production of rare earth elements.This study aimed to investigate the dissolution and adsorption behaviour of species that are commonly released into bastnaesite flotation pulp from Ca/Ba-bearing gangue minerals.The influence and corresponding mechanisms on the bastnaesite mineral surface and collectors,namely sodium oleate(NaOL),were evaluated experimentally based on micro-flotation,zeta potentials,in situ attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-Ray photoelectron spectroscopy(XPS)analyses.The flotation recovery of bastnaesite significantly decreased from ~95% to ~25%,~15%,~80%,~25% when exposed to calcite,fluorite,barite,and mixed dissolved species,respectively.The zeta potential of bastnaesite was pH sensitive,indicating that H^(+) and OH^(−)determine the surface potential of bastnaesite.Solution chemistry analyses revealed that the presence of the dissolved species differed at various pH values.In situ ATR-FTIR demonstrated the different effects of the dissolved species from calcite,fluorite,and barite on collector adsorption.The former two dissolved species mainly depressed the chemisorption of the NaOL monomers(RCOO^(-)),whereas calcite also affected the physical adsorption of the oleic acid molecular dimer(RCOOH·RCOO^(-)).Moreover,the barite dissolved species only affected the physical adsorption of the NaOL species.The results of XPS analysis revealed that dissolved species from these three gangues could pre-adsorbed onto bastnaesite and affected the interaction with the collector.Density functional theory calculations were employed to provide further theoretical insights into the interactions between the dissolved species from calcite,fluorite,and barite and NaOL.
出处 《Fundamental Research》 CAS 2022年第5期748-756,共9页 自然科学基础研究(英文版)
基金 supported by the National Natural Science Foundation of China(Grants No.51922091 and 51874247).
  • 相关文献

参考文献1

二级参考文献2

共引文献4

同被引文献41

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部