期刊文献+

基于卷积神经网络和航拍图像的电力线路绝缘子缺陷识别 被引量:7

Insulator Defect Recognition of Power Line Based on Convolution Neural Network and Aerial Images
原文传递
导出
摘要 由于电力线路绝缘子故障导致输电系统故障,基于高空作业平台的绝缘子检测系统得到了广泛的应用。绝缘子缺陷检测是在航空图像复杂背景下进行的,检测识别具有一定的挑战性。而基于主观的特征或浅层学习技术的传统方法只能在特定的检测条件下定位绝缘子并检测故障。为此,本研究讨论了利用航空图像自动检测绝缘子缺陷,精确定位从实际检测环境采集的输入图像中出现的绝缘子缺陷。提出了一种新颖的深卷积神经网络(convolutional neural network, CNN)级联结构,用于绝缘子缺陷的定位和检测。级联网络使用基于区域建议网络的CNN将缺陷检测转化为两级目标检测问题。针对实际检测环境中缺陷图像的稀缺性,提出了一种数据增强方法,该方法包括四种操作:1)仿射变换;2)绝缘子分割和背景融合;3)高斯模糊;4)亮度变换。有实验结果可见,该方法的缺陷检测精度和召回率分别为0.91和0.96,均优于现阶段常用的方案,能够满足绝缘子缺陷检测的鲁棒性和准确性要求。 Due to the transmission system failure caused by power line insulator fault, the insulator detection system based on aerial work platform has been widely used. Insulator defect detection is carried out in the complex background of aerial images, and detection and recognition has certain challenges. However, traditional methods based on subjective features or shallow learning technology can only locate insulators and detect faults under specific detection conditions. Therefore, the author discusses the automatic detection of insulator defects using aerial images, and accurately locate the insulator defects in the input images collected from the actual detection environment. A novel cascaded structure of deep convolutional neural network(CNN) is proposed for insulator defect location and detection. In cascaded network, CNN based on area recommendation network is used to transform defect detection into two-level target detection problem. In view of the scarcity of defect image in actual detection environment, a data enhancement method is proposed, which includes four operations: 1) affine transformation;2) insulator segmentation and background fusion;3) Gaussian blur;4) brightness transformation. Experimental results show that the defect detection accuracy and recall rate of this method are 0.91 and 0.96 respectively, which are better than the commonly used schemes at present stage, and can meet the requirements of robustness and accuracy of insulator defect detection.
作者 李凯 运凯 张建业 王天军 苑学贺 马崇瑞 LI Kai;YUN Kai;ZHANG Jianye;WANG Tianjun;YUAN Xuehe;MA Chongrui(State Grid Xinjiang Electric Power Co.,Ltd.,Information and Communication Company,Urumqi 830000,China;State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi 830000,China;Beijing Zhongdian Puhua Information Technology Co.,Ltd.,Beijing 100000,China)
出处 《电瓷避雷器》 CAS 北大核心 2022年第5期133-141,共9页 Insulators and Surge Arresters
关键词 航空图像 卷积神经网络(CNN) 数据增强 缺陷检测 绝缘子 aerial image convolutional neural network(CNN) data augmentation defect detection insulator
  • 相关文献

参考文献4

二级参考文献53

共引文献44

同被引文献100

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部