期刊文献+

压缩变形对XH1650D钢连续冷却相变的影响

Study on Continuous Cooling Phase Transformation of Compress Deformed XH1650D Steel
原文传递
导出
摘要 通过MMS-200热模拟试验机测定了XH1650D钢未变形和两道次压缩变形后不同冷速(0.1~10℃/s)下的连续冷却相变行为,利用膨胀法获得连续冷却转变曲线,并采用LEICA DMi8金相显微镜观察了不同冷速下的金相组织和珠光体晶粒尺寸。结果表明:压缩变形后XH1650D钢的奥氏体晶粒得到细化,淬透性降低,同时促进了铁素体+珠光体的转变,抑制了贝氏体的转变,使得连续冷却转变曲线左移;变形提高了XH1650D钢的铁素体+珠光体的相变温度,增加了获得贝氏体的临界冷却速度;铁素体+珠光体的相变开始温度/结束温度由0.1℃/s的704℃/683℃提高到0.1℃/s的736℃/683℃,获得贝氏体的临界冷却速度由0.5℃/s增至1.5℃/s。在实际轧制中,为获得对后续生产有利的铁素体+珠光体组织,XH1650D钢的冷速应控制在低于1.5℃/s为宜。XH1650D钢的临界点温度为A_(c1)=812℃,A_(c3)=843℃。 The phase transformation temperature range of undeformed and double pass compressed XH1650D steel at different cooling rates(0.1~10℃/s)is measured by MMS-200 thermo simulation tester.The continuous cooling transition(CCT)curve is obtained by using the expansion method.The microstructure at different cooling rates and the pearlite grain size are observed by LEICA DMi8 metallographic microscope.The results show that:after compressed deformation,the austenite grain of XH1650D steel is refined and the quenching property is reduced,which promotes the ferrite+pearlite transformation and restrains the bainite transformation and lets the CCT curve move left.The deformation increases the ferrite+pearlite phase transition temperature and increases the critical cooling speed of obtaining bainite.The ferrite+pearlite phase transition start/end temperature is increased from 704℃/683℃to 736℃/683℃at 0.1℃/s cooling speed,and the critical cooling speed of obtaining bainite is increased from 0.5℃/s to 1.5℃/s.In the process,to obtain the ferrite+pearlite,it is appropriate that the cold speed of XH1650D steel should be controlled at less than 1.5℃/s.The critical point temperature of XH1650D steel is A_(c1)=812℃and A_(c3)=843℃.
作者 丁兴艳 刘鸣坤 彭宁琦 杨奇军 DING Xingyan;LIU Mingkun;PENG Ningqi;YANG Qijun(Xiangtan Iron and Steel Group Co.,Ltd.,Xiangtan Hunan 411101,China)
出处 《金属材料与冶金工程》 CAS 2022年第5期19-23,共5页 Metal Materials and Metallurgy Engineering
关键词 XH1650D 连续冷却相变 金相组织 冷却速率 压缩变形 XH1650D steel continuous cooling transformation microstructure cooling rate deformation
  • 相关文献

参考文献1

二级参考文献8

  • 1田村今男著 王国栋 刘振宇 熊尚武 等译.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1992.50-79.
  • 2Hillenbrand H G. Gras M, Kalwa C.铌 · 科学与技术[M].北京:冶金工业出版社,2003: 340-356.
  • 3Zhao Mingchun, Yang Ke, Xiao Furen. Cooling transformation ofundefomed and deformed low carbon pipeline steel [ J ]. MaterialsScience and Engineering A,2003,355(1-2) : 126-136.
  • 4Kim Y M, Lee H, Kim N J. Transformation behavior andmicrostructural characteristics of acicular ferrite in linepipe steels [ J].Materials Science and Engineering A, 2008,478(1-2) : 361-370.
  • 5Xiao Furen, Liao Bo, Ren Deliang. Acicular ferritic microstructure of alow-carbon Mn-Mo-Nb microalloyed pipeline steel [ J ]. MaterialsCharacterization, 2005, 54(4-5) : 305-314.
  • 6Thompson S W, Colvin D J, Krauss G. Austenite decompositionduring continuous cooling of an HSLA-80 plate steel [ J ].Metallurgical and Materials Transactions A, 1996, 27 ( 6 ):1557-1571.
  • 7朱利敏,韩振华,覃信茂.铌对管线钢连续冷却过程相变温度和显微组织的影响[J].金属热处理,2012,37(4):51-54. 被引量:4
  • 8黄志潜.国外输气管道技术的发展现状和几点建议[J].焊管,2000,23(3):1-20. 被引量:29

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部