摘要
为提高低成本惯性测量单元(intertial measurement unit, IMU)阵列的行人航位推算(pedestrian dead reckoning, PDR)定位精度,首次提出了采用多层感知机(multi-layer perceptron, MLP)实现低成本IMU阵列数据融合的算法,通过将自主设计的IMU阵列和高精度IMU同步运动来获得IMU阵列的测量数据(包括三轴加速度和三轴角速度)和高精度IMU的测量数据,以高精度IMU的测量数据作为标签,利用MLP将IMU阵列的测量数据融合,预测出物体的实际加速度和角速度,并用定位算法进行验证。在定位实验中,使用MLP融合后的预测数据的PDR定位精度比使用单个IMU测量数据的PDR定位精度提高了33.9%;比使用简单平均处理的IMU阵列测量数据的PDR定位精度提高了20.8%;比使用最小二乘法融合的IMU阵列测量数据的PDR定位精度提高了11.6%,证明了本文所提出方法的可行性和有效性。
In order to improve the positioning accuracy of pedestrian dead reckoning(PDR) for low-cost inertial measurement unit(IMU) arrays, this paper proposes for the first time the use of multi-layer perceptron(MLP) to achieve algorithms for low-cost IMU array data fusion. The measurement data of the IMU array(including triaxial acceleration and triaxial angular velocity) and the measurement data of the high-precision IMU are obtained by synchronizing the motion of the self-designed IMU array and the high-precision IMU, and the measurement data of the high-precision IMU is used as a label. The MLP fuses the measurement data of the IMU array, predicts the actual acceleration and angular velocity of the object, and uses the positioning algorithm to verify it. In the localization experiment, the PDR localization accuracy using the prediction data fused by MLP is 33.9% higher than the PDR localization accuracy using a single IMU measurement data;it is 20.8% higher than the PDR localization accuracy using the simple average processing IMU array measurement data;it is 11.6% higher than the PDR localization accuracy using the IMU array measurement data fused by the least square method, which proves the feasibility and effectiveness of the method proposed in this paper.
作者
廖亚桢
刘昱
张立强
李虎
宫霄霖
Liao Yazhen;Liu Yu;Zhang Liqiang;Li Hu;Gong Xiaolin(School of Microelectronics,Tianjin University,Tianjin 300072,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2022年第8期35-42,共8页
Journal of Electronic Measurement and Instrumentation
基金
国家自然科学基金(61771338)项目资助。
关键词
惯性测量单元阵列
行人航位推算
多层感知机
数据融合
inertial measurement unit array
pedestrian dead reckoning
multi-layer perceptron
data fusion