期刊文献+

运动状态下人体轮廓提取及身高估算

Human Body Contour Extraction and Height Estimation in Motion
下载PDF
导出
摘要 自然拍摄的视频信息通常包含前景和背景,采取传统轮廓提取或边缘提取等图像处理方法难以准确识别到视频信息中的人体轮廓信息。通过对比分析基于高斯混合模型法的OpenCV计算机视觉库中的BackgroundSubtractorKNN和BackgroundSubtractorMOG2背景减除算法,基于KNN算法提出了一种改进的背景减除算法,对所得图像经过中值滤波去除噪声影响后再进行阈值处理消除阴影部分从而提取出清晰的人体轮廓。并在此基础上基于像素比例系数关系提出了一种身高估算方法。实验表明,该方法能准确有效提取行走状态下的人体轮廓,身高估算与实际测量相对误差率在5%以内,能够较为准确的估算身高。 The natural video information usually includes foreground and background,and it is difficult to recognize the human body contour in the video information by traditional image processing methods such as contour extraction or edge extraction.In this paper,the background subtraction algorithms of BackgroundSubtractorKNN and BackgroundSubtractorMOG2 in OpenCV based on Gauss’ s hybrid model method are compared and analyzed,An improved background subtraction algorithm based on KNN algorithm is proposed.After the noise is removed by median filter,the shadow part is removed by threshold,and then a clear human body contour is extracted On this basis,a method of height estimation is proposed based on the relation of pixel scale coefficient.The experimental results show that the method can extract the human body contour accurately and effectively,and the relative error rate between height estimation and actual measurement is less than 5% height,Estimation can be more accurately.
作者 李忠浩 罗文田 陈乾 成鹏 LI Zhong-hao;LUO Wen-tian;CHEN Qian;CHENG Peng(Civil aviation flight university of China,electronic and electrical engineering institution,Guanghan 618307,China)
出处 《电脑与信息技术》 2022年第6期42-45,共4页 Computer and Information Technology
关键词 图像处理 混合高斯模型 背景消除 人体轮廓 身高估算 image processing Gauss’s hybrid model background subtraction human body contour height estimation
  • 相关文献

参考文献6

二级参考文献56

  • 1孙敏,周军红.图像自动增强技术在第二代身份证相片处理中的应用[J].计算机应用研究,2006,23(8):189-191. 被引量:1
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3侯叶,郭宝龙.基于图切割的人体运动检测[J].光电子.激光,2007,18(6):725-728. 被引量:11
  • 4Grimson W E L, Stauffer C, Romano R. Using adaptivetracking to classify and monitor activities.in a site. in IEEE Conf. Computer Vision and Pattern Recognition, 1998.
  • 5Friedman N, Russell S. Image segmentation in video sequences:A probabilistic approach. presented at the 13th Conf. Uncertainty in Artificial Intelligence, Providence,RI, 1997.
  • 6Stauffer C . Grimson W. Learning patterns of activity using real - time tracking. IEEE Trans.Pattern Analysis and Machine Intelligence,Auguest 2000.
  • 7Elgammal A, Duraiswami R , Background and Foregound Modeling Using Nonparametric Kernal Density Estimation for Visual Surveillance. in Proc. IEEE,Vol. 90,No. 7,July 2002.
  • 8Rittscher J,Kato J,Joga S,Blake A. A probabilistic background model for tracking. in Proc. 6th Eur.Conf. Computer Vision,vol. 2,2000.
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F,Bouhman J. Topology free hidden markov models:Application to background modeling. in Proc. IEEE Int. Conf. Computer Vision,2001.
  • 10Yang Y H, Levine M D. The background primal sketch: An approach for tracking moving objects.Machine Vision Applicat. Vol. 5,1992.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部