摘要
智能化重大装备(以下简称“智重装备”)的设计与优化是装备全生命周期中的重要环节,对于装备质量与系统性能提升具有重要意义。由于智重装备物理结构与控制系统间复杂的耦合关系,传统先结构设计再控制设计的串行顺序优化设计方法难以获得全局最优值。为此,本文提出一种结构与控制并行的多学科一体化优化设计方法来获取最优匹配的结构与控制参数。对智重装备的结构与控制一体化优化现状做出归纳总结。分别利用KKT条件与极小值原理证明了传统串行优化的不足以及多学科并行一体化设计方法的最优性,并给出常用的模型求解方法。以无人矿用挖掘机与无人堆取料机为对象,给出了结构与控制一体化优化方法在智重装备设计中具体应用方式。计算结果表明,提出的一体化优化方法比传统串行优化方法具有明显的优势,能够进一步提升智重装备的关键性能。
The design and optimization of the intelligent large-scale equipments are foundations in the whole life cycle of equipments,which is of great significance to the improvement of product quality and system performance.Due to the complex coupling relationship between physical structure and control system of intelligent large-scale equipments,it is difficult to obtain the optimal solution by traditional sequential optimization design methods.Therefore,a multidisci plenary co-design optimization method is proposed to obtain the optimal matching relationship between structure and control parameters.The traditional sequential design method and co-design optimization method of structure and control parameters are introduced.The optimality of the co-design method is proved by using KKT condition and minimum principle,and typical computational methods are presented for co-design optimization model.A paradigm of applying co-design method in the intelligent large-scale equipment is presented and demonstrated by two engineering examples of design optimization about unmanned cable shovel and unmanned bucket wheel reclaimer.The results show that the proposed co-design optimization method is superior to the traditional sequential design method,and can further improve the key performance of the intelligent large-scale equipments.
作者
宋学官
张天赐
付涛
郭东明
SONG Xueguan;ZHANG Tianci;FU Tao;GUO Dongming(School of Mechanical Engineering,Dalian University of Technology,Dalian 116024)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第17期26-40,共15页
Journal of Mechanical Engineering
基金
国家自然科学基金(52075068)
国家重点研发计划(2018YFB1700704)资助项目。
关键词
智重装备
一体化优化
KKT条件
极小值原理
intelligent large-scale equipments
multidisciplinary co-design optimization
KKT condition
minimum principle