期刊文献+

激光差动共焦曲率半径快速测量方法 被引量:2

Laser differential confocal radius measurement with high precision and high efficiency
下载PDF
导出
摘要 针对大批量球面光学元件曲率半径的快速、高精度、非接触测量难题,提出一种基于差动共焦技术的批量元件曲率半径快速测量方法。先将一已知曲率半径的样件S在其共焦位置进行扫描定焦,获取其差动共焦曲线和线性段方程;依次装卡同批次被测元件S_(l)-S_(n)并无扫描地获得其离焦量;根据样件曲率半径和被测件离焦量换算出被测样品曲率半径。仿真和实验表明,精度可达12.2ppm,同时测量速度比传统式差动共焦曲率半径扫描系统提高59倍。方法仅需1次扫描和N次快速装卡即可实现N件球面元件曲率半径的快速、高精度、非接触式检测,为大批量球面元件的高效率、高精度加工检测提供全新途径。 To meet the need for rapid, high-precision measurement of the radius of curvature for large quantities of spherical optics, a radius measurement method based on differential confocal detection is proposed in this study. Firstly, scan a templet whose radius is known on its confocal position axially to obtain the fitted linear function;Secondly, replace the templet to the test sample in sequence, capture the differential confocal intensity without scan, map the single intensity to defocus with the linear function;Finally, calculate the radius under test by defocus and radius of template. Simulation and experiments show that the measurement accuracy is 12.2 ppm, and the measurement efficiency is 59 times higher than the traditional differential confocal scanning measurement. The measurement proposed only needs scanning once and replacing S_(n) N times to realize fast, high-precision, radius detection of N pieces of spherical surface. The proposed measurement provides a new way for high-efficiency and high-precision measurement of large quantities of spherical lenses.
作者 李金金 李琦 崔健 邱丽荣 王允 杨帅 LI Jinjin;LI Qi;CUI Jian;QIU Lirong;WANG Yun;YANG Shuai(School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处 《光学技术》 CAS CSCD 北大核心 2022年第5期566-571,共6页 Optical Technique
基金 基于自由曲面的共体光学系统纳米精度制造基础研究项目(2017YFA0701203) 国家重大科研仪器研制项目(61827826) 基础加强计划技术领域基金项目(2019-JCJQ-JJ-280)。
关键词 差动共焦 曲率半径 快速测量 differential confocal radius of curvature high precision high efficiency
  • 相关文献

参考文献1

二级参考文献16

  • 1徐永祥,陈磊,朱日宏,李新华.微小球面曲率半径的测量研究[J].仪器仪表学报,2006,27(9):1159-1162. 被引量:23
  • 2BECKER P, FR1EDRICH H,FUJII K,et al. The Avogadro constant determination via enriched silicon-28[ J]. Meas- urement Science and Technology, 2009, 20 (9) : 092002.
  • 3NICOLAUS R A, GECKELER R D. Improving the meas- urement of the diameter of Si spheres [ J ]. IEEE Transac- tions on Instrumentation and Measurement, 2007, 56 (2) : 517-522.
  • 4NICOLAUS R A, ELSTER C. Diameter determination of Avogadro Spheres #1 and #2 [ J ]. IEEE Transactions on Instrumentation and Measurement, 2005, 54 ( 2 ) : 872 -876.
  • 5SELBERG L A. Radius measurement by interferometry [J]. Optical Engineering, 1992, 31(9) : 1961-1967.
  • 6HECHT E. Optics[ M]. Addison Wesley, 2002 : 443.
  • 7SCHMITZ T L, DAVIES A D, EVANS C J. Uncertain- ties in interferometric measurements of radius of curvature [J]. Proceedings of SPIE, 2001, 4451: 432-447.
  • 8SCHMITZ T L, GARDNER N, VAUGHN M, et al. Im- proving optical bench radius measurements using stage er- ror motion data [ J ]. Applied Optics, 2008, 47 (36) : 6692-6700.
  • 9ABDELSALAM D G, SHAALAN M S, ELOKER M M, et al. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflec- tion[J]. Optics and Lasers in Engineering, 2010, 48: 643 -649.
  • 10YI H Y, ZHANG R ZH, HUA X Y, et al. A novel com- pensation method for the measurement of radius of curva- ture[ J]. Optics and Lasers in Engineering, 2011, 43: 911-915.

共引文献15

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部