期刊文献+

End-to-end learning of 3D phase-only holograms for holographic display 被引量:4

原文传递
导出
摘要 Computer-generated holography(CGH)provides volumetric control of coherent wavefront and is fundamental to applications such as volumetric 3D displays,lithography,neural photostimulation,and optical/acoustic trapping.Recently,deep learning-based methods emerged as promising computational paradigms for CGH synthesis that overcome the quality-runtime tradeoff in conventional simulation/optimization-based methods.Yet,the quality of the predicted hologram is intrinsically bounded by the dataset's quality.Here we introduce a new hologram dataset,MIT-CGH-4K-V2,that uses a layered depth image as a data-efficient volumetric 3D input and a two-stage supervised+unsupervised training protocol for direct synthesis of high-quality 3D phase-only holograms.The proposed system also corrects vision aberration,allowing customization for end-users.We experimentally show photorealistic 3D holographic projections and discuss relevant spatial light modulator calibration procedures.Our method runs in real-time on a consumer GPU and 5 FPS on an iPhone 13 Pro,promising drastically enhanced performance for the applications above.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第9期2176-2193,共18页 光(科学与应用)(英文版)
  • 相关文献

参考文献1

共引文献38

同被引文献48

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部