摘要
探究了冷却速率对Ti_(40.9)Zr_(30.4)Nb_(4.2)Cu_(7)Ni_(1.7)Be_(15.8)内生型非晶合金复合材料组织结构及力学性能的影响。采用铜模铸造法制备内生型非晶复合材料,通过控制复合材料的尺寸来控制冷却速率,尺寸越大冷却速率越慢。利用XRD、SEM、DSC、万能力学试验机等对非晶合金复合材料的组织结构及力学性能等进行表征。结果表明,随冷却速率的降低,枝晶相发生熟化且尺寸增大;压缩试验证明,冷却速率显著影响复合材料的压缩性能,随冷却速率的降低,加工硬化能力变强,抗压强度显著提高,最高达到1921 MPa,但屈服强度略有降低;拉伸试验证明,冷却速率对非晶复合材料的屈服强度和抗拉强度等影响不大,最高抗拉强度达到1469 MPa。
Effect of cooling rate on microstructure and mechanical properties of in-situ formed bulk metallic glass composites(BMGCs) Ti_(40.9)Zr_(30.4)Nb_(4.2)Cu_(7)Ni_(1.7)Be_(15.8)was studied. The BMGCs were prepared by a copper casting method, with the cooling rate of which being controlled by the sizes of BMGCs, the larger the BMGCs, the slower the cooling rate. The microstructure and the properties were characterized by XRD, SEM, DSC and universal mechanical testing machine, respectively. The results show that with the decrease of cooling rate, the dendrites are ripening and the size increases. Compression tests show that the cooling rate largely influences the compression properties of the BMGCs. The lower the cooling rate, the stronger the work hardening ability, the higher the compressive strength;and the maximum compressive strength reaches 1921 MPa, but the yield strength decreases slightly. Tensile tests show that the cooling rate does not have a significant effect on the tensile properties of the BMGCs, and the maximum tensile strength reaches 1469 MPa.
作者
夏士超
耿铁强
李文
李宏
朱正旺
Xia Shichao;Geng Tieqiang;Li Wen;Li Hong;Zhu Zhengwang(School of Materials Science and Engineering,Shenyang Ligong University,Shenyang Liaoning 110159,China;Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang Liaoning 110016,China;CAS Key Laboratory of Nuclear Materials and Safety Assessment,Institute of Metal Research,Chinese Academy of Sciences,Shenyang Liaoning 110016,China)
出处
《金属热处理》
CAS
CSCD
北大核心
2022年第10期65-71,共7页
Heat Treatment of Metals
基金
国家自然科学基金面上项目(52074257)。
关键词
内生型非晶复合材料
冷却速率
压缩性能
拉伸性能
in-situ formed bulk metallic glass composites
cooling rate
compression properties
tensile properties