期刊文献+

基于时间序列聚类算法的城市轨道交通节假日客流波动分析

Analysis of Passenger Flow Fluctuation of Urban Rail Transit during Holidays Based on Time Series Clustering Algorithm
原文传递
导出
摘要 与平常相比,节假日期间城市轨道交通客流会出现大幅度的波动,对波动规律进行分析和预测,是城市轨道交通运营管理部门制定客流组织方案的先决条件。鉴于传统方法对样本规模依赖程度较大这一局限性,提出一种基于时间序列聚类算法的城市轨道交通节假日客流波动分析方法。借鉴相似法思想,以相似日为参照,在节假日客流波动率序列和节假日客流波动率差分序列的基础上构建了节假日客流波动描述向量,并以描述向量为依据,实现特征提取和聚类。以重庆轨道交通为研究对象,对3天节假日客流数据进行分析,客流量平均相对误差仅为4.56%。为更加准确地分析节假日客流量,进而为城市轨道交通运营管理部门制定节假日运力调配和车站客流疏导等方案提供了有力的决策支持。 Compared with ordinary days,the passenger flow of urban rail transit fluctuates greatly during holidays.Analyzing and forecasting the fluctuation principle is a prerequisite for the urban rail transit operation management department to formulate the passenger flow organization plan.In view of the limitation of the traditional methods which relied heavily on the sample size,a method for analyzing the fluctuation of passenger flow of urban rail transit during holidays based on the time series clustering algorithm was proposed.Referring to the idea of similarity method and taking similar days as a reference,the description vector of passenger flow fluctuation during holidays was constructed on the basis of passenger flow fluctuation series and passenger flow fluctuation difference series during holidays.The feature extraction and clustering were realized based on the description vector.Taking Chongqing rail transit as the research object,the average relative error of passenger flow is only 4.56% by analyzing the passenger flow data of 3-day holidays.Such a method provides a strong decision support for the urban rail transit operation management department to analyze the passenger flow during holidays more accurately,and further to formulate plans for capacity allocation and passenger flow diversion in stations during holidays.
作者 李金明 LI Jinming(Network Control Center of Chongqing Rail Transit Group Co.,Ltd.,Chongqing 400042,China)
出处 《工业技术创新》 2022年第5期91-99,107,共10页 Industrial Technology Innovation
关键词 城市轨道交通 节假日 客流波动 聚类算法 相似日 Urban Rail Transit Holidays Passenger Flow Fluctuation Cluster Algorithm Similar Days
  • 相关文献

参考文献8

二级参考文献52

  • 1翁剑成,荣建,任福田,魏中华.基于非参数回归的快速路行程速度短期预测算法[J].公路交通科技,2007,24(3):93-97. 被引量:17
  • 2上海市城市综合交通规划研究所,世博交通研究中心.世博交通研究阶段工作成果[R].上海市城市综合交通研究所,2009.
  • 3上海世博会事务协调局交通管理部,上海市城市综合交通规划研究所.上海世博交通需求整合与修编研究[R].上海市城市综合交通研究所,2008.
  • 4上海市城乡建设和交通委员会,上海市城市综合交通规划研究所.上海世博交通保障行动方案[R].上海市城市综合交通研究所,2006.
  • 5上海世博会事务协调局交通管理部,上海市城市综合交通规划研究所.世博园区周边交通特征调查报告[R].上海市城市综合交通研究所,2007.
  • 6唐寿成.地铁车站客流组织工作探讨[J].铁道运输与经济,2007,29(9):48-50. 被引量:35
  • 7刘晶.基于相似日和支持向量机的短期负荷预测研究[D].广州:华南理工大学,2010.
  • 8郭鹏,陈晓玲.基于GIS的城市轨道交通站点客流辐射区域算法[J].中国铁道科学,2007,28(6):128-132. 被引量:7
  • 9Upchurch C, Kuby M, Zoldak M, et al. Using GIS to Generate Mutually Exclusive Service Areas Linking Travel on and off a Network[J]. Journal of Transport Geography, 2004, 12(1): 23-33.
  • 10O' Neil W, Ramsey D, Chou J. Analysis of Transit Service Areas Using Geographic Infor- mation Systems[J]. Transportation Research Record, 1992, 1364: 131-138.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部