期刊文献+

利用Izhikevich模型探究神经元动作电位的发放特性

Using the Izhikevich Model to Explore the Firing Characteristics of Neuronal Action Potentials
原文传递
导出
摘要 不同种类的神经元拥有不同类型的离子通道,离子通道的开放和关闭可以产生不同形状、频率和模式的动作电位。对动作电位的发放特性进行探究,将为生物神经系统的硬件设备开发、脑机接口技术研发等提供机理层面上的支持。采用Matlab软件,利用Izhikevich尖峰神经元模型,考察刺激电流的类型、静息膜电位和膜恢复变量等因素对神经元发放动作电位的影响。研究发现:改变静息膜电位的数值,并不影响动作电位的发放频率;增大膜恢复变量的数值,会使动作电位的发放数量增多,但仍不影响各簇动作电位的发放频率,且膜恢复变量越大,动作电位发放时间越早;在不同类型的电流刺激下,改变静息膜电位和膜恢复变量不会对动作电位的发放特性产生影响。 Different kinds of neurons have different types of ion channels,and the opening and closing of ion channels can produce action potentials with different shapes,frequencies and patterns.Exploring the firing characteristics of action potentials will provide mechanism support for the development of hardware equipment and R&D of brain-computer interface technology for biological nervous systems.By using the Matlab software and Izhikevich spiking neuronal model,the effects of stimulation current types,resting membrane potentials and membrane recovery variables on the firing action potentials from neurons were investigated.Findings:changing the value of resting membrane potentials does not affect the firing frequency of action potentials;increasing the value of membrane recovery variables will increase the firing amount of action potentials,but it still does not affect the firing frequency of action potentials in each cluster;the larger the membrane recovery variable is,the earlier the action potentials are fired;under different types of current stimulation,changing the resting membrane potentials and membrane recovery variables will not affect the firing characteristics of action potentials.
作者 刘佳琦 袁鸣 曲秀荣 周胜 LIU Jiaqi;YUAN Ming;QU Xiurong;ZHOU Sheng(School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China)
出处 《工业技术创新》 2022年第5期100-107,共8页 Industrial Technology Innovation
关键词 离子通道 Izhikevich尖峰神经元模型 动作电位 MATLAB 膜恢复变量 Ion Channel Izhikevich Spiking Neuronal Model Action Potential Matlab Membrane Recovery Variable
  • 相关文献

参考文献5

二级参考文献37

  • 1许微,王江,费向阳.动作电位在有髓鞘神经纤维上传递速度的计算模型及分析[J].自然科学进展,2005,15(5):604-610. 被引量:3
  • 2Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J ]. J Physiol, 1952, 117(4): 500-544.
  • 3Hsu KH, Durand DM. Prediction of neural excitation during magnetic stimulation using passive cable models [J]. IEEE Trans BME, 2000, 47(4): 463-471.
  • 4Nagarajan SS, Durand DM. Analysis of magnetic stimulation of a concentric axon in a nerve bundle[J]. IEEE Trans BME, 1995, 42 (9): 926-933.
  • 5Richardson AG, McIntyre CC, Grill WM. Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath[J]. Med Biol Eng Comput, 2000, 38(4): 438-446.
  • 6Vetter P, Roth A, Hausser M. Propagation of action potentials in dendrites depends on dendritic morphology [J]. J Ncurophysiol, 2001, 85(2): 926-937.
  • 7Zhou L, Chiu SY. Computer model for action potential propagation through branch point in myelinated nerves[J]. J Neurophysiol, 2001, 85(1): 197-210.
  • 8McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle[J]. J Neurophysiol, 2002, 87(2): 995-1006.
  • 9Greenberg RJ, Velte TJ, Humayun MS, et al. A computational model of electrical stimulation of the retinal ganglion cell [J ]. IEEE Trans BME, 1999, 46(5): 505-514.
  • 10Rattay F, Lutter P, Felix H. A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes [J ]. Hear Res, 2001, 153(1-2): 43-63.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部