期刊文献+

临床决策支持系统在结核潜伏感染筛查诊断中的应用 被引量:2

Application of clinical decision support system in screening and diagnosis of latent tuberculosis infection
原文传递
导出
摘要 目的探索临床决策支持系统(CDSS)在某三甲综合医院对结核潜伏感染(LTBI)高危患者筛查和诊断中的效果。方法对2019年1月-2021年12月中日友好医院住院的LTBI高危患者,按照是否应用CDSS管理LTBI将患者分为CDSS应用前组和CDSS应用后组,采用倾向性评分匹配降低组间的混杂因素影响后,对比分析CDSS应用对LTBI筛查率、诊断阳性率的影响。结果CDSS应用前组中的1231例LTBI高危患者,467例接受结核菌素皮肤试验(TST)或γ-干扰素释放试验(IGRA),45.82%联合胸部影像学检查,52例诊断为LTBI者;CDSS应用后组纳入802例LTBI高危患者,481例接受TST或IGRA检测,45.32%联合胸部影像学检查,76例诊断为LTBI者。倾向性评分匹配后,LTBI筛查率由CDSS应用前的44.75%(290/648)提高至CDSS应用后的54.48%(353/648)(P=0.001);LTBI诊断阳性率由CDSS应用前的12.76%(37/290)提高至CDSS应用后的14.73%(52/353),差异无统计学意义(P=0.471)。其中,接受透析疗法、器官移植患者LTBI筛查率均有所提升(P<0.05);接受肿瘤坏死因子治疗患者、透析疗法、器官移植患者LTBI诊断阳性率略有上升(P>0.05)。结论CDSS应用有利于提高LTBI高危患者的筛查率,LTBI诊断阳性率有所上升但差异不显著。CDSS在优化LTBI规范管理方面仍有较大发展空间。 OBJECTIVE To explore the effect evaluation of screening and diagnosis of high-risk patients with latent tuberculosis infection(LTBI)based on clinical decision support system(CDSS)based in a general hospital.METHODS High-risk LTBI patients hospitalized in China-Japan Friendship Hospital from Jan.2019 to Dec.2021 were divided into the pre-CDSS application group and post-CDSS application group according to whether CDSS was used to manage LTBI.After the influence of confounding factors between the groups was reduced by propensity score matching,the effects of CDSS application on the screening rate and diagnostic positive rate of LTBI were compared and analyzed.RESULTS Among the 1231 high-risk patients with LTBI in the pre-CDSS application group,467 patients received tuberculin skin tes(TST)or interferon-gamma release test(IGRA)detection,45.82%of the patients were combined with chest imaging examination,and 52 patients were diagnosed with LTBI.In the post-CDSS application group,802 patients with high risk of LTBI were included,481 patients underwent TST or IGRA test,45.32%of the patients were combined with chest imaging examination,and 76 patients were diagnosed with LTBI.After propensity score matching,the LTBI screening rate increased from 44.75%(290/648)before CDSS application to 54.48%(353/648)after CDSS application(P=0.001).The positive rate of LTBI diagnosis increased from 12.76%(37/290)before CDSS application to 14.73%(52/353)after CDSS application,and the difference was not statistically significant(P=0.471).Among them,the LTBI screening rates in patients receiving dialysis therapy and organ transplantation were improved(P<0.05).The positive rate of LTBI diagnosis in patients undergoing tumor necrosis factor,dialysis therapy and organ transplantation was slightly increased(P>0.05).CONCLUSION The CDSS application was beneficial to improve the screening rate of patients at high risk of LTBI,and the positive rate of LTBI diagnosis were increased but the difference was not significant.There were large room for the development of CDSS in optimizing LTBI specification management.
作者 朱瑞芳 郭丽萍 张铁山 郑爱辉 蒋艳 王莹丽 郝萌萌 王强 曹彬 ZHU Rui-Fang;GUO Li-Ping;ZHANG Tie-Shan;ZHENG Ai-hui;JIANG Yan;WANG Ying-li;HAO Meng-meng;WANG Qiang;CAO Bin(Beijing University of Chinese Medicine,Beijing 100029,China)
出处 《中华医院感染学杂志》 CAS CSCD 北大核心 2022年第19期3025-3030,共6页 Chinese Journal of Nosocomiology
基金 国家级重大科研基金资助项目(2017ZX10204401004) 中国老年医学会感染防控研究基金委员会基金资助项目(GRYJ-YK 2018047)。
关键词 结核潜伏感染 临床决策支持系统 医院感染 筛查 诊断 结核潜伏感染预警模块 Latent tuberculosis infection Clinical decision support system Hospital infection Screening Diagnosis Latent tuberculosis infection warming module
  • 相关文献

参考文献7

二级参考文献42

  • 1王黎霞,姜世闻,刘小秋,何广学,徐汉成,张慧.全国结核病防治工作进展[J].中国预防医学杂志,2009,10(1):78-80. 被引量:4
  • 2陈杰,徐红.抽样调查中样本量的设计和计算[J].武汉职业技术学院学报,2006,5(1):118-120. 被引量:29
  • 3Austin PC. The performance of different propensity-score methods for estimating differences in proportions( risk differences or absolute risk reductions) in observational studies. Stat Med, 2010,29 ( 20 ) : 2137- 2148.
  • 4Borah B J, et al. Applications of propensity score methods in observa- tional comparative effectiveness and safety research:where have we come and where should we go? J Comp Eff Res,2014,3 ( 1 ) :63-78.
  • 5胡红林.倾向评分法在医学研究中的应用和分析,华中科技大学,2009.
  • 6Austin PC. An Introduction to Propensity Score Methods for Reduc- ing the Effects of Confounding in Observational Studies. Multivariate Behav Res,2011,46(3) :399-424.
  • 7Kheterpal S, et al. Development and validation of an acute kidney in- jury risk index for patients undergoing general surgery : results from a national data set. Anesthesiology, 2009.110 ( 3 ) : 505-15.
  • 8Heckman J J, et al. Sources of selection bias in evaluating social pro- grams : an interpretation of conventional measures and evidence on the effectiveness of matching as a program evaluation method. Proc Natl Acad Sci U S A,1996,93(23) :13416-20.
  • 9Groenwold,R. H. , [ Propensity scores in observational research ]. Ned Tijdschr Geneeskd,2013,157 (29) : A6179.
  • 10Pattanayak C W. D. B. Rubin, E. R. Zell. Propensity score methods for creating covariate balance in observational studies]. Rev Esp Car- diol, 2011,64 ( 10 ) : 897-903.

共引文献194

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部