期刊文献+

基于C3D CNN的人脸表情识别系统设计与开发

Design and Development of Facial Expression Recognition System Based on Deep Learning
下载PDF
导出
摘要 为了实现对人脸表情的自动识别,笔者设计和开发了一款基于C3D卷积神经网络(Convolutional Neural Network,CNN)的人脸表情识别系统。首先,利用已有Cohn-Kanade数据集和CASMEⅡ数据集作为训练数据。其次,使用Keras和TensorFlow的深度学习框架搭建C3D CNN,创建数据集并进行训练,以得到人脸表情识别模型。最后,使用PyQt5设计和开发人脸表情识别系统。结果表明,该系统具有页面简洁明了、方便用户操作等特点,可为心理诊断等领域提供一定的判断依据。 In order to realize the automatic recognition of facial expression, the author designs and develops a facial expression recognition system based on C3D Convolutional Neural Network(CNN). Firstly, the existing Cohn-Kanade data set and CASMEⅡ data set are used as training data. Secondly, the C3D CNN is built using the deep learning framework of keras and TensorFlow, and the data set is created for training to obtain the facial expression recognition model. Finally, we use PyQt5 to design and develop a facial expression recognition system. The results show that the system has the characteristics of simple and clear pages, convenient for users to operate and so on. Automatic recognition of facial expressions can provide a certain basis for psychological diagnosis, criminal interrogation and other fields.
作者 吴家辉 周涛 罗明新 肉扎吉·依马穆 WU Jiahui;ZHOU Tao;LUO Mingxin;ROUZHAJI·Yimamu(School of Computer and Electronic Information,Guangxi University,Nanning Guangxi 530004,China)
出处 《信息与电脑》 2022年第14期104-107,共4页 Information & Computer
基金 自治区级大学生创新创业训练计划项目(项目编号:202110593229)。
关键词 人脸表情 识别系统 C3D卷积神经网络(CNN) 心理诊断 facial expression recognition system C3D Convolutional Neural Network(CNN) psychological diagnosis
  • 相关文献

参考文献5

二级参考文献78

  • 1丁名都,李琳.基于CNN和HOG双路特征融合的人脸表情识别[J].信息与控制,2020,49(1):47-54. 被引量:17
  • 2左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 3Mehrabian A.Communication without words[J].Psychology Today,1968,2(4):53 ~ 56.
  • 4Cohen I,Sebe N,Garg A,et al.Facial expression recognition from video sequences:Temporal and static modeling[J].ComputerVision and Image Understanding,2003,91(1-2):160 ~ 187.
  • 5Cohen I,Sebe N,Cozman F G,et al.Learning bayesian network classifiers for facial expression.recognition with both labeled and unlabeled data[A].In:Proceedings of International Conference on Computer Vision and Pattern Recognition[C],Madison,Wisconsin,USA,2003,1:595 ~ 604.
  • 6Bartlett M S,Littlewort G,Frank M,et al.Recognizing facial expression:machine learning and application to spontaneous behavior[A].In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],San Diego,CA,USA,2005,2:568 ~ 573.
  • 7Guo G D,Dyer C R.Learning from examples in the small sample case:face expression recognition[J].IEEE Transactions on System,Man and Cybernetics-Part B,Special Issue on Learning in Computer Vision and Pattern Recognition,2005,35 (3):477 ~ 488.
  • 8Muller S,Wallhoff F,Hulsken F,et al.Facial expression recognition using pseudo 3-D hidden Markov models[A].In:Proceedings of International Conference on Pattern Recognition[C],Québec City,Canada,2002,2:32 ~ 35.
  • 9Yeasin M,Bullot B,Sharma R.From facial expression to level of interest:a spatio-temporal approach[A].In:Proceedings of International Conference on Computer Vision and Pattern Recognition[C],Washington,DC,USA,2004,2:922 ~ 927.
  • 10Kanade T,Cohn J F,Tian Y.Comprehensive database for facial expression analysis[A].In:Proceedings of the Fourth International Conference of Face and Gesture Recognition[C],Grenoble,France,2000:46 ~ 53.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部