摘要
比较原理对于研究分数阶方程的性质具有重要的作用。首先,证明了ABR型分数阶差分方程的比较原理。其次,利用比较原理,建立了不确定性分数阶差分方程的解与其α-路径之间的联系。接着,给出了ABR型不确定性分数阶差分方程解的不确定性分布。最后,具体的实例验证了主要结论的正确性。
Comparison theorems play an essential role in studying the properties of the fractional equations. Firstly, a comparison theorem for ABR type fractional difference equations is proved. Next, based on the proven comparison theorem, the connections between the solution for an uncertainty fractional difference equation and its α-path are established. Then, the uncertainty distribution of solutions for ABR type uncertainty fractional difference equations is also derived. Finally, examples are given to verify the correctness of main results.
作者
陈雨婷
李晓艳
王雪芹
CHEN Yuting;LI Xiaoyan;WANG Xueqin(School of Mathematical Sciences,Anhui University,Hefei 230601)
出处
《工程数学学报》
CSCD
北大核心
2022年第6期910-924,共15页
Chinese Journal of Engineering Mathematics
基金
安徽省高校自然科学研究项目(KJ2019A0004).
关键词
ABR型分数阶差分方程
比较原理
不确定分布
α-路径
ABR type fractional difference equations
comparison theorem
uncertainty distribution
α-path