期刊文献+

阶跃光激励的光热偏转技术的理论研究

Theoretical Research of the Photothermal Deflection Technique with Step Optical Excitation
下载PDF
导出
摘要 基于光热偏转技术,在阶跃光激励下,样品和偏转媒质的一维温度分布和光热偏转信号幅度将随时间和空间发生变化.利用拉普拉斯变换求得其温度分布和信号幅度的表达式,并计算模拟偏转媒质的温度场、温度梯度随时间的变化,以及探测光离样品表面不同距离时的信号变化规律,分析偏转信号幅度随材料热扩散率大小的变化规律.模拟结果表明,光热偏转信号幅值及样品表面空气的温度梯度均随离样品表面的距离增加而变小,信号幅值上升与下降的快慢受样品的热扩散率的影响较大. Based on the photothermal deflection technique(PDT)with step optical excitation,the one-dimensional temperature distribution and photothermal deflection signal amplitude of the sample and deflection medium will change with time and space.The expressions of temperature distribution and signal amplitude are obtained by Laplace transform.The temperature field and temperature gradient of the deflection medium with time and the signal variation law of the probe beam at different distances from the sample surface are simulated.The variation of deflection signal amplitude with material thermal diffusivity is analyzed.The simulation results show that the temperature gradient decreases with the increase of the distance from the sample surface,The farther the probe beam is from the sample surface,the smaller the PTD signal and the slower the signal rises and falls.The greater the thermal diffusivity of the sample,the faster the signal rises and decreases.
作者 曾胜财 ZENG Shengcai(Department of Information,Xiamen Ocean Vocational College,Xiamen 361100,China)
出处 《赣南师范大学学报》 2022年第6期56-60,共5页 Journal of Gannan Normal University
基金 2020年福建省中青年教师教育科研项目(JAT201164,JAT201166) 厦门海洋职业技术学院2021年校级教改项目(JWJB202105)。
关键词 阶跃光 光热偏转技术 拉普拉斯变换 时变信号 step optical photothermal deflection technique Laplace transform time-varying signals
  • 相关文献

参考文献3

二级参考文献24

  • 1Sharp R, Runkel M.Automated damage onset analysis techniques applied to KDP damage and the Zeus small area damage test facility.SPIE,2002,3902: 361~368.
  • 2Shi Baixuan, Chen Wenbin, Siu G G,et al.Error arising from original approximation in photothermal measurement of weak absorption of optical thin film. Review of Progress in Quantitative NDE,1991,group 14,169.
  • 3Sheehan L, Schwartz S,et al. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Lab. SPIE,1998,3578:302~313.
  • 4Liu XJ, Huang O J, Zhang S Y, et al. Thermal diffusivity of perovskite Sr2FeMoO6 (M = Fe, Mn and Co)and La doping effect studied by mirage effect [J]. Journal of Physics and Chemistry of Solids, 2004,65 : 1247-1251.
  • 5Nakagawa T. Magnetic and electrical properties of ordered perovsikte Sr2 (FeMo)O6 and its related compounds [J]. J Phys Soc Japan, 1968,24 : 806-811.
  • 6Sleight A W, Weiher J F. Magnetic and electrical properties of Ba2MRe(36 ordered perovskite[J]. J Phys Chem Solids, 1972,33: 679-687.
  • 7Patterson F K, Moeller C W, Ward R. Magnetic oxides of molyb-denum(V) and tungsten(V) with the perovskite structure[J]. Inorg Chem, 1963,2:196-198.
  • 8Nakagara T, Sanchez R D, Caneiro A, et al. Electrical properties and mossbauer effect in the system Sr2 (FeMoxW1-x) 06 [J]. J Phys Soc Japan, 1969,27 : 880-886.
  • 9Arrott-A, Noakes J E. Approximate equation of state for nickel near critical temperature[J]. Phys Rev Lett, 1967,19 : 786-789.
  • 10Nakayarna S, Nakagawa T, Nomura S. Neutron diffraction of Srz (FeMo)O6[J]. J Phys Soc Japan, 1968,24:219-220.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部