期刊文献+

Seedling survival after simulating grazing and drought for two species from the Pamirs,northwestern China

下载PDF
导出
摘要 For plant populations to persist,seedling recruitment is essential,requiring seed germination,seedling survival and growth.Drought and grazing potentially reduce seedling recruitment via increased mortality and reduced growth.We studied these seederelated processes for two species indigenous to the Pamir Mountains of Xinjiang in northwestern China:Saussurea glacialis and Plantago lessingii.Seeds collected from Taxkorgan,Xinjiang,had a viability rate of 15.8%for S.glacialis but 100%for P.lessingii.Of the viable seeds,the highest germination rates were 62.9%for S.glacialis and 45.6%for P.lessingii.In a greenhouse experiment,we imposed a series of stressful conditions,involving a combination of simulated grazing and drought events.These had the most severe impact on younger seedlings.Modelling showed that 89%of S.glacialis mortality was due to early simulated grazing,whereas 80%of P.lessingii mortality was due to early simulated drought.Physiological differences could contribute to their differing resilience.S.glacialis may rely on water storage in leaves to survive drought events,but showed no shifts in biomass allocation that would improve grazing tolerance.P.lessingii appears more reliant on its root system to survive grazing,but the root reserves of younger plants could be insufficient to grow deeper in response to drought.After applying all mortality factors,17.7 seedlings/parent of P.lessingii survived,while only<0.1 seedlings/parent of S.glacialis survived,raising concerns for its capacity to persist in the Pamirs.Inherent genetic differences may underlie the two species’contrasting grazing and drought responses.Thus,differing conservation strategies are required for their utilization and protection.
出处 《Plant Diversity》 SCIE CAS CSCD 2022年第6期607-616,共10页 植物多样性(英文版)
基金 a Yunnan Provincial Human Resources and Social Security Bureau Post-Doctoral Grant Chinese Academy of Sciences President’s International Fellowship Initiative grant[grant number 2020FYC0003] the National Sciences Foundation China[grant number 41661144001] the Key Research Program of Frontier Sciences[grant number QYZDY-SSW-SMC014].
  • 相关文献

参考文献3

二级参考文献43

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部