期刊文献+

由复合屏蔽层构成的电动汽车无线充电磁耦合器 被引量:1

Magnetic Coupler with Composite Shielding Layer for Wireless Charging of Electric Vehicle
下载PDF
导出
摘要 磁耦合器作为无线充电系统的核心部件,由能量发射线圈、能量接收线圈和电磁屏蔽层组成。目前在屏蔽层中使用大量的铁氧体和铝材以增强系统的耦合性能并且减少电磁泄漏,这造成了磁耦合器体积大、重量重、成本高,另外铁氧体还存在着易碎易饱和等问题,严重制约了电动汽车无线充电技术的推广和应用。为了解决上述问题,提出了一种由铁基纳米晶带材、铁氧体和铝箔构成的复合屏蔽层,在详细分析纳米晶带材特性的基础上,给出了纳米晶带材的前置处理工艺,利用Maxwell等仿真软件,从线圈静态参数的对比、铁氧体饱和状态的改善以及屏蔽效能和抗偏移能力等多方面阐述了复合屏蔽层的优势。最终搭建实验平台并加以验证。 As the crucial component of a wireless charging system,the magnetic coupler is composed of an energy transmitting coil,an energy receiving coil and an electromagnetic shielding layer.At present,a large quantity of ferrite and aluminum materials are used in the shielding layer to enhance the coupling performance of the system and reduce its electromagnetic leakage,which causes the problem of large volume,heavy weight and high cost for the magnetic coupler.In addition,ferrite is fragile and easily saturated,which seriously restricts the promotion and application of the electric vehicle wireless charging technology.To solve these problems,a composite shielding layer composed of iron-based nanocrystalline strip,ferrite and aluminum foil is proposed.Based on the detailed analysis of the characteristics of nanocrystalline strip,the pretreatment process of nanocrystalline strip is given.By using simulation softwares including Maxwell,the advantages of the composite shielding layer are described from aspects such as the comparison of coil static parameters,the improvement in ferrite saturation,shielding efficiency and misalignment tolerance.Finally,an experimental platform was built to verify the simulation results.
作者 卢哲 王春芳 杨凌云 李卓玥 LU Zhe;WANG Chunfang;YANG Lingyun;LI Zhuoyue(School of Electrical Engineering,Qingdao University,Qingdao 266071,China)
出处 《电源学报》 CSCD 北大核心 2022年第6期75-83,共9页 Journal of Power Supply
基金 国家自然科学基金资助项目(51877113)。
关键词 无线充电 磁耦合器 复合屏蔽层 电动汽车 纳米晶带材 wireless charging magnetic coupler composite shielding layer electric vehicle nanocrystalline strip
  • 相关文献

参考文献1

二级参考文献106

  • 1毛赛君,王慧贞.非接触感应电能传输系统可分离变压器特性分析[J].电源世界,2006(5):37-39. 被引量:13
  • 2Bi Z, Song L, De Kleine R, et al. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system[J]. Appl Energy, 2015, 146: 11-19.
  • 3Barrett J P. Electricity at the columbian exposition[M]. Columbia: Nabu Press, 1894: 168-169.
  • 4Hutin M, Leblanc M. Transformer System for Electric Railways: US Patent, No. 527 875[P].l894.
  • 5Otto D V. Power supply equipment for electrically-driven vehicle: JP Patent, No. 49 063 III[P]. 1974-06-19.
  • 6Bolger J G, Kirsten F A. Investigation of the feasibility of a dual mode electric transportation system, LBL6301[R]. Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, 1977-05.
  • 7Eghtesadi M. Inductive power transfer to an electric vehicle-analytical model[C]// Vehi Tech Con/, 1990 IEEE 40th: 100-104.
  • 8Bolger J G. Urban electric transportation systems: The role of magnetic power transfer[C]// WESCONI94. Ideal Microelectronics. Con/Record. IEEE, 1994: 41-45.
  • 9Systems Control Technology Inc. Roadway powered electric vehicle project: Track construction and testing program phase 3D[R]. California PATH Program, Inst Transportation Studies, Univ California, Berkeley, CA, USA, UCB-ITS-PRR-94-07, 1994-07.
  • 10Qi Wireless Power Consortium, Seoul, Korea. Wireless Power Consortium Website[R/OL].[2013-11-12]. http:// www.wirelesspowerconsortium.com.

共引文献37

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部