期刊文献+

虚拟直流电机技术参数分析及虚拟惯量自适应控制 被引量:4

Parameters Analysis and Virtual Inertia Adaptive Control of Virtual DC Motor Technique
下载PDF
导出
摘要 建立了虚拟直流电机控制系统的闭环传递函数,分析了虚拟直流电机惯量系数和阻尼系数对性能的影响,并建立了基于模糊神经网络的虚拟惯量自适应控制器,解决了虚拟惯量导致的电压恢复缓慢问题。基于虚拟直流电机控制系统的闭环传递函数,根据伯德图、极点分布图以及阶跃响应曲线分析了惯量系数和阻尼系数变化对虚拟直流电机控制系统性能的影响。根据惯量系数和阻尼系数变化对控制系统性能的影响,以及虚拟直流电机控制算法,设计了基于模糊神经网络的虚拟惯量自适应控制器,并通过对系统超调量的限定,设计了阻尼系数的整定方法。通过计算机仿真分析,验证了基于模糊神经网络的虚拟惯量自适应算法的正确性,证明了该自适应控制器的有效性。 The closed-loop transfer function of control system for a virtual DC motor(VDM)is established,and the influences of its inertial coefficient and damping coefficient on its performance are analyzed.In addition,a virtual inertia adaptive controller based on the adaptive neuro-fuzzy inference system is established,and the problem of slow voltage recovery caused by virtual inertia is solved.Based on the closed-loop transfer function,the influences of variations in inertial coefficient and damping coefficient on the performance of the control system are analyzed according to the Bode diagram,pole map and step response curve.Based on these influences and the control algorithm for VDM,the virtual inertia adaptive controller based on the adaptive neuro-fuzzy inference system is designed.Moreover,an adjusting method for the damping coefficient is designed by limiting the overshoot of the system.The correctness of the virtual inertia adaptive algorithm based on the adaptive neuro-fuzzy inference system is verified by computer simulation analysis,and the effectiveness of the designed adaptive controller is also proved by simulations.
作者 崔健 房建军 CUI Jian;FANG Jianjun(National Institute of Clean and Low?鄄Carbon Energy,Beijing 102211,China;Center of Green Energy and Architecture,China Energy Investment Group Co.,Ltd,Beijing 102211,China)
出处 《电源学报》 CSCD 北大核心 2022年第6期192-202,共11页 Journal of Power Supply
基金 铜铟镓硒光伏建筑装配式一体化产品与示范创新线研发项目(LS9300190001)。
关键词 虚拟直流电机 闭环传递函数 参数分析 模糊神经网络 虚拟惯量自适应 virtual DC motor closed-loop transfer function parameters analysis adaptive neuro-fuzzy inference system virtual inertia adaptive
  • 相关文献

参考文献24

二级参考文献206

  • 1刘俊,卢建刚.基于BP神经网络自适应PID的负载控制系统[J].控制工程,2009,16(S2):74-77. 被引量:5
  • 2王丹,毛承雄,陆继明.自平衡电子电力变压器[J].中国电机工程学报,2007,27(6):77-83. 被引量:60
  • 3马宏忠,徐树峰,鞠平,严惠敏,张利民,陈奋,朱统亮.基于直流发电机的风力发电系统及其控制策略[J].河海大学学报(自然科学版),2007,35(3):334-337. 被引量:6
  • 4鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:935
  • 5杰里米·里夫金.第三次工业革命[M].张体伟,孙豫宁,译.北京:中信出版社,2012.6.
  • 6毛承雄,王丹.电子电力变压器[M].北京:中国电力出版社,2010.
  • 7Zhong Q C, Weiss G. Synchronverters: Inverters that mimic synchronous generators [ J]. IEEE Transactions on Industrial Electronics, 2011, 58 (4) : 1259 - 1267.
  • 8Huang A Q, Crow M L, Heydt G T, et al. The future renewable electric energy delivery and management (FREED M)system: The energy interact[J]. Proceedings ofthelEEE, 2011, 99(1): 133-148.
  • 9Snchez-SquellaA, Ortega R, Grifi6R, etal. Dynamic energy router[J]. IEEE Control Systems Magazine, 2010, 30(6): 72-80.
  • 10Bifaretti S, Zanchetta P, Watson A, et al. Advanced power electronic conversion and control system for universal and flexible power management[J]. IEEE Transactions on SmartGrid, 2011, 2(2): 231-243.

共引文献471

同被引文献69

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部