摘要
针对多自由度柔顺机构存在输入耦合、输出耦合现象,提出一种完全解耦的多相材料柔顺机构拓扑优化设计方法。采用单元堆积方法建立多相材料插值模型,以机构的多个输出位移加权和最大化作为目标函数,引入输入耦合和输出耦合约束抑制耦合效应,以输入耦合、输出耦合和各相材料结构体积作为约束,建立基于多相材料的完全解耦多自由柔顺机构拓扑优化模型,将移动渐近线优化算法用于求解多约束拓扑优化问题。与无解耦拓扑优化结果相比,完全解耦拓扑优化获得的多相材料柔顺机构构型有所不同,机构的输入耦合和输出耦合得到有效抑制,能够实现多自由度机构输入、输出运动完全解耦;并且分析不同抑制耦合系数对拓扑优化结果影响。
For the input coupling and output coupling issues of compliant mechanisms with multiple degrees of freedom,a method for topological design of fully decoupled compliant mechanisms with multiple materials is presented.The multiple materials interpolation model based on the element stacking method is adopted.The maximization of the weighted sum of multiple output displacements is applied as the objective function.Both input coupling and output coupling constraints are proposed to suppress the coupling issues.The coupling constraints and the structural volume for each material are used as the constraints.The model for topological design of fully decoupled compliant mechanisms with multiple degrees of freedom using multiple materials is established.The method of moving asymptotes is adopted to solve the topology optimization problem.The obtained compliant mechanisms considering the coupling issue is different from those without considering the coupling issue.Both input coupling and output coupling of compliant mechanisms with multiple degrees of freedom can be suppressed effectively.The input and output motions of the compliant mechanisms can be completely decoupled.The influence of different coupling coefficients on the results is analyzed.
作者
占金青
汪庭威
段丁强
刘敏
Zhan Jinqing;Wang Tingwei;Duan Dingqiang;Liu Min(School of Mechatronics and Vehicle Engineering,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Conveyance Equipment of the Ministry of Education,East China Jiaotong University Nanchang 330013,China)
出处
《华东交通大学学报》
2022年第6期77-83,共7页
Journal of East China Jiaotong University
基金
国家自然科学基金项目(52065019,52165002,51665011)
江西省自然科学基金项目(20202BAB204015,20202ACBL214013)。
关键词
柔顺机构
多自由度
多相材料
拓扑优化
完全解耦
compliant mechanisms
multiple degrees of freedom
multiple materials
topology optimization
full decoupling