摘要
暖通空调系统的自动化和准确故障检测与诊断是智能工业设施维护领域减少时间、能源和财务成本的最重要技术之一。近年来,基于数据驱动的故障检测与诊断方法在暖通空调方面表现出色,但是大多数方法都只能检测单一故障等级的故障,并且不能进行跨系统故障诊断。为了解决这两个问题,提出一种基于联邦学习的故障检测与诊断方法,该方法使用卷积神经网络来提取信息特征,利用特定算法进行聚合,经过多次联邦学习,能够进行跨故障等级和跨系统故障检测与诊断。在多故障等级故障检测与诊断方面,利用冷水机组4个故障等级数据进行联邦学习。实验结果显示,4个故障等级的故障检测和诊断效果的F1-score平均值接近0.97,已经达到实际应用水平。在跨系统故障检测与诊断方面,利用冷水机组和空气处理机组数据进行联邦学习。实验结果表明,利用不同系统数据进行联邦学习,可以提高某些轻微故障的诊断效果,比如,相比传统机器学习方法,RefOver故障的诊断效果F1-score提升了14.4%,Refleak和Exoil两个故障的诊断F1-score提升了2%~4%。
Automation and accurate fault detection and diagnosis of HVAC systems is one of the most important technologies for reducing time,energy,and financial costs in building performance management.In recent years,data-driven fault detection and diagnosis methods have been heavily studied for fault detection and diagnosis of HVAC systems.However,most existing works deal with single systems and are unable to perform cross-system fault diagnosis.In this paper,a federal learning-based fault detection and diagnosis method is proposed,which uses convolutional neural networks to extract information features,aggregates features using special-designed algorithms,and perform cross-level and cross-system fault detection and diagnosis via federal lear-ning.For multi-fault level fault detection and diagnosis,federal learning is performed using data from four fault levels of chillers.Experimental results show that the average F1-score of the fault detection and diagnosis effect of the four-fault levels is close to 0.97,which is within the practical range.Federal learning uses chiller and air handling unit data for cross-system fault detection and diagnosis.Experimental results show that federal learning using different system data improves the diagnosis results of particular faults,e.g.,14.4%for RefOver faults and 2%~4%for both Refleak and Exoil faults.
作者
王先圣
严珂
WANG Xian-sheng;YAN Ke(School of Information Engineering,China Jiliang University,Hangzhou 310000,China)
出处
《计算机科学》
CSCD
北大核心
2022年第12期74-80,共7页
Computer Science
关键词
暖通空调系统
故障检测与诊断
卷积神经网络
联邦学习
Heating ventilation and air conditioning systems
Fault detection and diagnosis
Convolutional neural networks
Fede-rated learning