期刊文献+

智能家居大规模物联网设备“假离线”自恢复系统设计

Design of Fake-Offline Self-Recovery System for Large-Scale IoT Devices in Smart Home
下载PDF
导出
摘要 解决设备离线问题是维持无线传感器网络(WSN)稳定性与可靠性的首要任务。目前智能家居系统在网络规模不大且干扰度较低的场景下,设备间联动技术成熟,但在大规模或者环境“恶劣”运行场景下,联动效果不尽如人意。为解决该问题,本文提出了智能家居大规模物联网设备“假离线”自恢复系统设计方案。根据ZigBee网络中各类节点网络行为的不同,分别提出了针对ZigBee router节点和ZigBee end device节点的优化方案。测试结果表明,该方案能够及时将WSN中所有“假离线”设备自动恢复为在线状态;此系统部署后,强电设备离线率由10%下降至1%,弱电设备离线率由8%下降至1%,可极大改善网络设备离线率高的问题。 Solving the problem of device offline is the primary work to maintain the stability and reliability of wire-less sensor network(WSN).At present,in environment where small-scale and low interference,the inter-device linkage technology is mature,but in large-scale or bad environment,the link-age effect is not satisfactory.In order to solve this problem,this paper proposes a design of the fake-offline devices self-recovery system for large-scale wireless network(ZigBee).According to the different network behaviors of different nodes in network,optimization schemes for ZigBee router node and ZigBee end node are proposed.The test results show that the design can make all the fake-offline devices return to online automatically in time.After using this design,the offline rate of router devices decreased from 10%to 1%,and the end devices decreased from 8%to 1%.The quality of network is improved dramatically since the design was implemented.
作者 黎婷婷 LI Tingting(School of Computer ScienceGuangdong University of Science and Technology,Dongguan 523083,China)
出处 《智能物联技术》 2022年第3期24-29,共6页 Technology of Io T& AI
关键词 物联网 智能家居 ZIGBEE无线传感器网络 设备“假离线” 离线自恢复 IoT smart home ZigBee wireless sensor network fake-offline device offline self-recovery
  • 相关文献

参考文献4

二级参考文献60

  • 1陈良银,李志蜀,刘轶,汪洁.智能家居系统的设计与实现[J].新疆大学学报(自然科学版),2005,22(1):108-111. 被引量:16
  • 2魏振春,韩江洪,张建军,张利.智能家居远程控制系统的设计[J].合肥工业大学学报(自然科学版),2005,28(7):751-754. 被引量:22
  • 3Lynch JP, Loh KJ. A summary review of wireless sensors and sensor networks for structural health monitoring. The Shock and Vibration Digest, 2006,38(2):91-128. [doi: 10.1177/0583102406061499].
  • 4Farrar CR, Keith Worden K. An introduction to structural health monitoring. Philosophical Trans. of the Royal Society, 2007,365: 303-315. [doi: 10.1098/rsta.2006.1928].
  • 5Harms T, Sedigh S, Bastianini F. Structural health monitoring of bridges using wireless sensor networks. IEEE Instrumentation & Measurement Magazine, 2010,13 (6): 14-18. [dol: 10.1109/MIM.2010.5669608].
  • 6Wang P, Yah Y, Tian GY, Bouzid O, Ding ZG. Investigation of wireless sensor networks for structural health monitoring. Journal of Sensors, 2012:1-7. Idol: 10.1155/2012/156329].
  • 7Zhou GD, Yi TH. Recent developments on wireless sensor networks technology for bridge health monitoring. Mathematical Problems in Engineering, 2013:1-33.
  • 8Kim S, Pakzad S, Culler D, Demmel J. Health monitoring of civil infrastructures using wireless sensor networks. In: Proc. of the 6th Int'l Conf. on Information Processing in Sensor Networks (IPSN). New York: ACM Press, 2007. 254-263. [doi: 10A 109/IPSN. 2007.4379685].
  • 9Xiao H, Gong YX, Ogai H, Zhang J, Zou XH, Otawa T, Tsuji T. A data collection system in wireless network integrated WSN and zigbee for bridge health diagnosis. In: Proe. of the Society of Instrument and Control Engineers (SICE) Annual Conf. 2011. 2024-2028.
  • 10Chae M J, Yoo HS, Kim JY, Cho MY. Development of a wireless sensor network system for suspension bridge health monitoring. Automation in Construction, 2012,21:237-252. [doi: 10.1016/j.auteon.2011.06.008].

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部