期刊文献+

高容量富锂正极材料Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2)合成及表征 被引量:1

Synthesis and Characterization of High-capacity Lithium-rich Cathode Materials Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2)
下载PDF
导出
摘要 以共沉淀法合成的Ni_(0.17)Co_(0.11)Mn_(0.59)(OH)_(2)为前驱体,LiOH·H_(2)O为锂源,通过高温固相反应法制备富锂正极材料Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2)。采用XRD、SEM和充放电测试装置研究不同烧结温度(750℃、800℃、850℃、900℃)制备的富锂正极材料的结构、形貌和电性能。结果表明:在烧结温度为800℃、保温12 h的条件下合成的富锂正极材料Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2)具有良好的晶体结构、微观形貌和电化学性能;0.1 C倍率下的首次放电比容量为267.4 mAh/g,首次库伦效率为83.87%;1C倍率下首次放电比容量为196.7 mAh/g,充放电循环50圈的容量保持率为94.15%。 In this paper,the Ni_(0.17)Co_(0.11)Mn_(0.59)(OH)_(2) precursor was synthesized by the co-precipitation method,LiOH·H_(2)O was used as the lithium source,and the Lithium-rich Cathode Material Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2) was synthesized by high temperature solid-state method.Using X-ray diffraction(XRD),scanning electron microscope(SEM),galvanostatic charge/discharge battery test system to study the structure,morphology and electrical properties of lithium-rich cathode materials prepared at different sintering temperatures(750℃,800℃,850℃,900℃).As a result,Li_(1.13)Ni_(0.17)Co_(0.11)Mn_(0.59)O_(2) was sintered at 800℃for 12 h,which has a good crystal structure,micro morphology and best electrochemical performance.The cathode displays a high discharge capacity of 267.4 mAh/g with initial coulombic efficiency of 83.87%at 0.1 C,the initial discharge capacity was 196.7 mAh/g and a good capacity retention of 94.15%after 50 cycles at 1 C.
作者 谢永佳 赵霞妍 罗加悦 刘鑫雨 王奐然 蒙春燕 杨志伟 XIE Yongjia;ZHAO Xiayan;LUO Jiayue;LIU Xinyu;WANG Huanran;MENG Chunyan;YANG Zhiwei(Guilin Electrical Equipment Scientific Research Institute Co.,Ltd.,Guangxi Guilin 541004,China)
出处 《电工材料》 CAS 2022年第6期3-6,共4页 Electrical Engineering Materials
基金 中国机械工业集团有限公司重大科技专项(SINOMAST-ZDZX-2019-04)。
关键词 富锂正极材料 共沉淀 电化学性能 高温固相反应 lithium-rich cathode material co-precipitation electrochemical performance high temperature solid-state
  • 相关文献

参考文献5

二级参考文献76

  • 1MOHANTY D,KALNAUS S,MEISNER R A,et al.Structural transformation of a lithium-rich LiL2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J].Journal of Power Sources,2013,229:239-248.
  • 2KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature Materials,2011,10 (9):682-686.
  • 3LIN J,MU D,JIN Y,et al.Li-rich layered composite Li[Li0.2 Ni0.2 Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J].Journal of Power Sources,2013,230:76-80.
  • 4TABUCHI M,NABESHIMA Y,TAKEUCHI T,et al.Synthesis of high-capacity Ti-and/or Fe-substituted Li2 MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method[J].Journal of Power Sources,2013,221:427-434.
  • 5DANIEL C.Materials and processing for lithium-ion batteries[J].Jom,2008,60 (9):43-48.
  • 6KIM D,GIM J,LIM J,et al.Synthesis of xLi2MnO3 · (1-x)LiMO2 (M=Cr,Mn,Co,Ni) nanocomposites and their electrochemical properties[J].Materials Research Bulletin,2010,45 (3):252-255.
  • 7KANG S-H,THACKERAY M M.Enhancing the rate capability of high capacity xLi2 MnO3 · (1-x) LiMO2 (M=Mn,Ni,Co) electrodes by Li-Ni-PO4 treatment[J].Electrochemistry Communications,2009,11 (4):748-751.
  • 8KARTHIKEYAN K,AMARESH S,LEE G,et al.Electrochemical performance of cobalt free,LiL2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries[J].Electrochimica Acta,2012,68:246-253.
  • 9LI J,ZHANG Y,CHEN Z,et al.High capacity 0.5Li2MnO3 · 0.5 LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method[J].Electrochimica Acta,2013,87:686-692.
  • 10WANG T,LIU Z-H,FAN L,et al.Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via coprecipitation[J].Powder Technology,2008,187 (2):124-129.

共引文献38

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部