摘要
为研究深度学习算法在棉花叶片缺氮水平诊断上的适用性,以智能手机作为图像采集工具,利用图像处理和深度学习技术建立基于棉花叶片图像的缺氮水平分级模型,为智能化诊断棉花叶片缺氮水平的研究提供可行方案。本研究在阴天、晴天2种环境下获取了5种氮素水平的棉花叶片图像,在此基础上选取AlexNet、VGGNet、GoogLeNet、MobileNet、ResNeXt、ResNet-v2以及Inception-v3等卷积网络模型进行比较研究,并提出一种基于恒等映射和深度可分离卷积改进的ResNeXt模型来提升棉花叶片缺氮水平检测的效果。结果表明,与AlexNet、VGGNet、GoogLeNet、MobileNet、ResNeXt、Inception-v3、ResNet-v2等模型相比,本研究提出的Improved-ResNeXt模型在对棉花叶片图像的缺氮水平分级时取得了最佳效果,该模型的识别准确率、平均精确率、Kappa系数分别达到了97%、97%、0.96。使用本研究提出的Improved-ResNeXt模型可以有效地解决棉花叶片的缺氮水平诊断问题,且对阴天、晴天2种光照条件下的棉花叶片数据有良好的适用性,同时可以为相关作物营养胁迫检测的研究提供借鉴和参考。
出处
《江苏农业科学》
北大核心
2022年第22期180-191,共12页
Jiangsu Agricultural Sciences
基金
国家重点研发计划(编号:2017YFB0504203)
新疆生产建设兵团科技攻关计划(编号:2017DB005)。