期刊文献+

基于INF-Deffuant 模型的网络用户观点演化分析 被引量:1

Evolutional Analysis of Network Users’Opinion Based on an INF-Deffuant Model
下载PDF
导出
摘要 复杂网络中对用户观点进行演化分析能够挖掘用户的态度变化。当前主流方法过分依赖观点相似相交假设,忽略了影响力在用户观点交互过程中的控制作用,观点预测精度不高。本文在Deffuant模型框架内引入影响力参数,提出了一种基于影响力的用户观点交互模型(INF-Deffuant)。模型原理是:当两个个体相遇时,除了观点差值较小的个体之间容易发生交互之外,个体影响力差值较大的个体之间也容易发生交互;通过运用影响力和舆论环境构造个体观点接收系数,实现了个体之间观点的动态吸收。在实验数据集上验证了INF-Deffuant模型,并与其它基于Deffuant的模型进行了对比。实验结果表明:本文方法在群体观点演化预测和用户实体观点演化预测两个层面都达到了良好的效果。 The opinion evolutional analysis in complex networks can mine the changes of users'attitudes.The current mainstream methods rely too much on the assumption of similar intersection of views,and ignore the control role of influence in the process of the opinion interaction,which leads to the low accuracy of opinion prediction.we propose an INF-Deffuant model by introducing the influence parameter into the Deffuant-based model.The principle is that when two individuals meet,in addition to the interaction between individuals with small opinion difference,individuals with large individual influence difference are also easy to interact.By using influence and public opinion environment to construct individual opinion acceptance coefficient,the dynamic absorption of opinion among individuals is realized.Our approach is verified on the experimental datasets,and compared with other Deffuant-based models.The experimental results show that this method achieves better performance in both group view evolution prediction and user entity view evolution prediction.
作者 刘玉文 翟菊叶 潘玮 黄锦泉 王灿 LIU Yu-wen;ZHAI Ju-ye;PAN Wei;HUANG Jin-quan;WANG Can(School of Health Management,Bengbu Medical College,Bengbu 233030,China;College of Computer Science and Technology,University of Science and Technology of China,Ma’anshan 243032,China)
出处 《安徽师范大学学报(自然科学版)》 2022年第5期433-442,共10页 Journal of Anhui Normal University(Natural Science)
基金 安徽省哲学社会科学规划项目(AHSKQ2019D070)。
关键词 INF-Deffuant模型 影响力 情感圈 观点计算 观点预测 INF-Deffuant model influence emotional circle opinion calculation opinion prediction
  • 相关文献

参考文献11

二级参考文献118

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:82
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:120
  • 3同义词词林扩展版[EB/OL].[2011-03-03].http://www.ir-lab.org/.
  • 4姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 5Ellison N B. Social network sites:Definition, history, and scholarship [ J ]. Journal of Computer-Mediated Communi- cation ,2007,13 ( 1 ) :210 - 230.
  • 6Kleinberg J M. Authoritative sources in a hyperlinked envi- ronment [ J]. Journal of the ACM ( JACM), 1999,46 ( 5 ) : 604 - 632.
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine[ J]. ComputerNetworks and ISDN Sys- tems,1998,30(1) :107 - 117.
  • 8Kleinberg J M. Hubs, authorities, and communities [ J ]. ACM Computing Surveys ( CSUR), 1999,31 (4es) :5.
  • 9Zhai Z, Xu H, Jia P. Identifying opinion leaders in BBS [ A ]. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology [ C ]. IEEE, 2008. 398 - 401.
  • 10Amit G, Francesco B, Laks V S L. Discovering leaders from community actions [ A ]. International Conference on Information and Knowledge Management (CIKM) [. C ], California, USA ,2008. 499 - 508.

共引文献143

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部