期刊文献+

基于二维随机投影特征典型相关分析融合的SAR ATR方法

SAR ATR method based on canonical correlations analysis of features extracted by 2D random projection
下载PDF
导出
摘要 合成孔径雷达(Synthetic aperture radar,SAR)自动目标识别(Automatic target recognition,ATR)是现代战场情报侦察、精确打击的重要支撑技术。为提升SAR ATR整体性能,提出基于二维投影特征多重集典型相关分析(Multiset canonical correlations analysis,MCCA)的方法。首先,采用若干二维随机投影矩阵对SAR图像进行特征提取,获得多层次特征描述。考虑到这些结果之间的相关性和可能存在的冗余及干扰,进一步通过MCCA对它们进行融合处理,获取单一特征矢量。基于稀疏表示分类器(Sparse representation-based classification,SRC)对融合特征矢量进行处理,判决目标类别。实验基于MSTAR数据集开展,对方法性能进行检验确认,结果能够验证其有效性。 Synthetic aperture radar(SAR)automatic target recognition(ATR)is an important support technology for modern battlefield intelligence reconnaissance and precision strikes.In order to improve the overall performance of SAR ATR,a method based on multiset canonical correlations analysis(MCCA)of twodimensional(2D)projection features is proposed.First,a series of 2D random projection matrices are used to extract features from SAR images to obtain multi-level feature descriptions.Considering the correlation between these results and the possible redundancy and interference,they are further fused through MCCA to obtain a single feature vector.The sparse representation-based classification(SRC)is used to process the fusion feature vector to determine the target class.The experiment is carried out based on the MSTAR dataset to fully test the proposed methods.The experimental results verify its effectiveness.
作者 李正伟 黄孝斌 胡尧 Li Zhengwei;Huang Xiaobin;Hu Yao(School of Earth Science,Chengdu University of Technology,Chengdu 610059,China;The Engineering&Technical College of Chengdu University of Technology,Leshan 614000,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2022年第10期356-363,共8页 Infrared and Laser Engineering
基金 四川旅游发展研究中心项目(2021SCLV-06) 四川省乐山市科技局重点项目(19GZD025)。
关键词 合成孔径雷达 自动目标识别 二维随机投影 多重集典型相关分析 稀疏表示分类 synthetic aperture radar automatic target recognition 2D random projection multiset canonical correlations analysis sparse representation-based classification
  • 相关文献

参考文献14

二级参考文献85

  • 1徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 2CHEN Y,BLASCH E,CHEN H, et al. Experimental feature-based SAR ATR performance evaluation under different operational conditions[C]. Proc. of SPIE, 2008,6968 : 69680F. 1-69680F. 12.
  • 3MISHRA A K, MULGREW B. SAR ATR.. Experiments with the GTRI dataset[C]. IEEE Radar Conference, RADAR, 2008.
  • 4BHANU B, JONES G. Recognizing occluded objects in SAR images [J]. IEEE Trans. on Aerospace and Electronic Systems,2001,37(1) :316-328.
  • 5BHANU B,JONES G, Recognition articulated objects and object articulation in SAR images [C]. Proc of SPIE, 1997 : 305-321.
  • 6BHALLA R,LING H,MOORE J, et al. 3D scattering center representation of complex targets using the shooting and bouncing ray technique.. A review [J]. IEEE Antennas and Propagation Magzaine, 1998,40 (5):30-39.
  • 7ANDERSH D, MOORE J, KOSANOVICH S, et al. Xpatch 4 the next generation in high frequency elec tromagnetic modeling and simulation software [C]. IEEE National Radar Conference, 2000 : 844-849.
  • 8JOLLIFFE I T. Principal component analysis [M]. 2nd ed. New York : Springer Press, 2002.
  • 9LU X,HAN P,WU R. Two-dimensional PCA for SAR automatic target recognition[C]. 1st Asian and Pacific Conference on SAR, Huangshan, 2007: 513-516.
  • 10YANG J,PENG Y N, LIN S M. Simularity between two scattering matrices[J]. Electronics Letters,2001, 37(3) : 193-194.

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部