期刊文献+

次分数布朗运动机制下的外汇期权定价模型 被引量:1

Pricing Currency Options in Sub-fractional Brownian Motion Regime
下载PDF
导出
摘要 次分数布朗运动可较好地刻画标的资产价格波动长程相关性的特征.文章主要探究次分数机制下外汇期权的定价问题.运用Delta对冲方法,得到模型下外汇期权满足的偏微分方程定解问题.进一步给出外汇期权的定价公式及相关数值计算结果.结果表明,在相同参数下,外汇期权在次分数机制下的价格低于其在布朗运动机制下的价格. Sub-fractional Brownian motion can better characterize long-range correlations of the underlying assets price well.This paper mainly studies the pricing of foreign exchange option under the sub-fractional regime.The partial differential equation which the foreign exchange option satisfied is obtained by using Del⁃ta hedging method.Moreover,the pricing formula for foreign exchange option and some relevant numerical re⁃sults are given.The results show that under the same parameters,the price of foreign exchange option under⁃sub-fractional regime is lower than that underthe Brownian motion regime.
作者 刘顺 郭志东 LIU Shun;GUO Zhidong(School of Mathematics,Anqing Normal University,246133,Anqing,Anhui,China)
出处 《淮北师范大学学报(自然科学版)》 CAS 2022年第4期30-35,共6页 Journal of Huaibei Normal University:Natural Sciences
基金 安徽省自然科学青年基金项目(1908085QA29)。
关键词 期权定价 次分数布朗运动 外汇期权 数值计算 option pricing sub-fractional Brownian motion foreign exchange options numerical calculation
  • 相关文献

参考文献6

二级参考文献30

  • 1刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 2吴金美,金治明,刘旭.支付连续红利的欧式和美式期权定价问题的研究[J].经济数学,2007,24(2):147-152. 被引量:7
  • 3Hu Y,Ksendal B.Fractional white noise and applications to finance[J].Infinite Dimensional Analysis,Quantum Prob-ability and Related Topics,2003,6:1-32.
  • 4Ducan T E,Hu Y,Pasik-Ducan B.Stochastic calculus for fractional Brownian motion I:theroy[J].SIAM J Control Option,2000,38:582-612.
  • 5Bender C.An Itó formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter[J].Stochastic Processes and Their Applications,2003,104:81-106.
  • 6GUASONI P.No arbitrage under transaction costs with fractional Brownian motion and beyond[J].Mathematical Finance,2006,16:569-582.
  • 7NECULA C.Option pricing in a fractional Brownian motion environment[J].Draft,Academy of Economic Studies,Bucharest,Romania,2002,12:1-18.
  • 8JIANG L S.Mathematical Modeling and Methods of Option Pricing[M].Singapore:World Scientific Publishing Company,2005.
  • 9BACHELIER L.Théorie de la spéculation[J].Ann Sci Ecole Norm Sup,1900,17:21-86.
  • 10BLACK F,SCHOLES M.The pricing of option and corporate liabilities[J].Journal of Political Economy,1973,81(3):637-654.

共引文献39

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部