摘要
工业上应用哈伯工艺法合成氨过程要求严苛,需要消耗大量能源且二氧化碳排放量大。因此,开发在常规环境条件下通过电催化氮还原反应的清洁技术,对未来可持续的能源转化进程具有重要意义。本研究采用密度泛函理论计算方法,对TM_(1)N_(4)/TM_(2)嵌入石墨烯的氮还原反应进行了全面研究。在充分考虑活性和稳定性的情况下,研究结果表明,NiN_(4)/Cr锚定石墨烯通过酶促反应途径表现出最佳的催化活性,其中第一次加氢为电位决定步骤,起始电位为0.57 V,优于商业Ru基材料。此外,与单一的Cr原子修饰的石墨烯相比,引入NiN_(4)官能团降低了ΔG_(max)并提高了电催化性能。根据Mulliken电荷分析,催化剂的催化活性主要来源于载体和反应中间体之间的电子转移。上述结果为高效合成氨提供了电极候选材料,进一步深化了相应的电催化机理。
Owing to the heavy energy consumption and the massive CO_(2) emission during ammonia synthesis via Haber-Bosch process,a clean technology of nitrogen reduction electrocatalysis under ambient conditions is of significance for the sustainable energy conversion progress in future.In the study,the nitrogen reduction reaction of TM_(1)N_(4)/TM_(2) embedded graphene is comprehensively investigated using density functional theory calculations.Fully considering the activity and stability,our results reveal that NiN_(4)/Cr anchored graphene exhibits the best catalytic activity via the enzymatic reaction pathway wherein the potential determining step is located at the first hydrogenation with an onset potential of 0.57 V,being superior to the commercial Ru-based material.Furthermore,compared with the isolated Cr atom decorated nitrogen functionalized graphene,the introduction of NiN_(4) moiety decreases ΔG_(max) and enhances the electrocatalytic performance.According to the Mulliken charge analysis,the physical origin of the catalytic activity is ascribed to the electron transition between the supports and reaction intermediates.Overall,these results pave a way for the design of the high efficient electrode material for ammonia synthesis and provide a fundamental insight into the electrocatalysis.
作者
吴静
余立兵
刘帅帅
黄秋艳
姜姗姗
ANTON Matveev
王连莉
宋二红
肖蓓蓓
WU Jing;YU Libing;LIU Shuaishuai;HUANG Qiuyan;JIANG Shanshan;ANTON Matveev;WANG Lianli;SONG Erhong;XIAO Beibei(School of Energy and Power Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China;National Research Ogarev Mordovia State University,Saransk 430005,Russia;School of Materials Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China)
出处
《无机材料学报》
SCIE
EI
CAS
CSCD
北大核心
2022年第10期1141-1152,共12页
Journal of Inorganic Materials
基金
National Natural Science Foundation of China(21503097)
Natural Science Foundation of Shaanxi Province(2018JQ5181)
Science and Technology Commission of Shanghai Municipality(21ZR1472900)。
关键词
氮气还原反应
石墨烯
密度泛函原理
电催化
热力学
nitrogen reduction reaction
graphene
density functional theory
electrocatalysis
thermodynamics