期刊文献+

基于图像区域特征的分区调光算法 被引量:2

Local Dimming Algorithm Based on Image Local Characteristics
下载PDF
导出
摘要 提出了一种基于图像区域特征的分区调光算法。首先,按背光分区对相应显示区域的图像特征进行提取和分类;然后基于改进的误差修正法得到该分区的初始背光值,再根据图像细节特征来调节亮度调光因子,最终确定输出的背光值;最后将输入显示图像使用高斯滤波进行高低频分离,按照细节含量的不同进行基于S曲线的像素补偿。实验结果表明,采用所提调光算法的显示器,与未采用调光技术的显示器相比,背光功耗降低了38.36%。与原有误差修正算法相比,图像的平均峰值信噪比提高了7.83 dB,平均信息熵提升了6.32%。证实本算法可以在较大幅度降低显示功耗、提升静态对比度的同时,更多地保留了原图像细节。 In order to balance image quality and power consumption,a local dimming algorithm based on image local features was proposed. Firstly,the image features of the corresponding display area were extracted and classified;then,the initial backlight value of the region was obtained based on the improved error correction method. The brightness dimming factor was adjusted according to the image detail characteristics to finally determine the output backlight value. Finally,the input display image was separated by Gaussian filter and the pixel compensation based on S-curve was carried out according to the different detail content. The experimental results showed that compared with the display without dimming technology,the backlight power consumption was reduced by 38.36%. Compared with the error correction algorithm,the average peak signal to noise ratio(PSNR) was increased by 7.83 dB and the average information entropy was increased by 6.32%.The proposed algorithm could greatly reduce the display power consumption and improve the static contrast,as well as retain more details of the original images.
作者 杜刚 冯奇斌 张乐 吕国强 DU Gang;FENG Qibin;ZHANG Le;LYU Guoqiang(School of Microelectronics,Hefei University of Technology,Hefei 230009,CHN;Academy of Photoelectric Technology,Hefei University of Technology,Hefei 230009,CHN;School of Instru mentation and Opto-electronics Engineering,Hefei University of Technology,Hefei 230009,CHN)
出处 《光电子技术》 CAS 2022年第3期193-201,共9页 Optoelectronic Technology
基金 安徽省科技重大专项(No.201903a05020057)。
关键词 动态调光 液晶显示 图像分类 S曲线 高斯滤波 local dimming LED image classification S curve Gaussian filtering
  • 相关文献

参考文献4

二级参考文献24

  • 1魏丹,陈淑珍,陈彬,杨莘.梯度倒数加权平滑算法的改进与实现[J].计算机应用研究,2005,22(3):153-154. 被引量:15
  • 2宋锦萍,宋玲珍,杨晓艺,李登峰.一种基于小波变换的图像消噪算法[J].电子与信息学报,2007,29(1):43-46. 被引量:7
  • 3阮秋琦.数字图象处理[M].2版.北京:电子工业出版社,2007.
  • 4Feng X,Milanfar P.Multi-scale principal components analysis for image local orientation estimation[C]//Proceedings of the 36th Asilomar Conference on Signals,Systems and Computers,Pacific Grove, CA, November 2002.
  • 5Catte F, Lions P L, and Coll T. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal of Numerical Analysis, 1992, 29(1): 182-193.
  • 6Lysaker M, Lundervold A, and Tai X C. Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2007, 12(12): 1579-1590.
  • 7Vogel R V and Oman M E. Iterative methods for total variation denoising[J]. SIAM Journal of Scientific Computing, 1996, 17(1): 227-238.
  • 8Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1986, 8(6): 679-698.
  • 9Mohsen E M and Mansour J. Linear motion blur parameter estimation in noisy images using fuzzy sets and power spectrum[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007(1): 1-8.
  • 10Rank K, Lendl M and Unbehanen R. Estimation of image noise variance[J]. IEE Proceedings-Visualization Image Signal Process, 1999, 146(2): 80-84.

共引文献69

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部