摘要
Higher-order topological insulators(HOTIs)are a newly devel-oped topological phase which hosts higher-codimensional topolog-ical states with lower dimensionality localized at the“boundaries of boundaries”[1,2].There are various methods to induce a higher-order topological phase.A quintessential example is the quadrupole insulator based on the Benalcazar,Bernevig,and Hughes(BBH)model[1],which has vanishing dipole polarization but a quantized quadrupole moment.Due to the extended higher-order bulk-boundary correspondence principle,a tWo-dimensional(2D)quadrupole insulator supports 0D in-gap corner states and 1D gapped edge states.Another canonical approach is to directly generalize the 1D SSH model to higher dimensions.
高阶拓扑绝缘体支持比一阶拓扑绝缘体更低维的拓扑边界态,其在整数维系统中得到了深入的研究.本文通过实验展示了声学分形晶格中的高阶拓扑相,为高阶拓扑绝缘体提供了一个新的范式.通过将分形引入到方形晶格中,作者发现了一个压缩的高阶相图,其具有丰富的角态,包括零维的外角态和1.89维的内角态.因此,分形晶格的余维数为1.89,分形模型可以被归类为分数阶的拓扑绝缘体.此外,外角/内角的分数电荷表明,分形系统中的所有角态都是拓扑非平庸的.最后,在一个人工制造的声学分形晶格中,作者通过声学测量,实验观察到了外角/内角态.本研究证明了声学分形晶格中存在高阶拓扑相,并可能为低阶拓扑绝缘体提供新的思路.
作者
Junkai Li
Qingyang Mo
Jian-Hua Jiang
Zhaoju Yang
李钧楷;莫清扬;蒋建华;杨兆举(Department of Physics,Interdisciplinary Center for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device,Zhejiang University,Hangzhou310058,China;School of Physical Science and Technology,and Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou 215031,China)
基金
the support of the National Natural Science Foundation of China(12174339)
Fundamental Research Funds for the Central Universities。