期刊文献+

A New Position Calibration Method for MUSER Images

下载PDF
导出
摘要 The Mingantu Spectral Radioheliograph(MUSER),a new generation of solar dedicated radio imagingspectroscopic telescope,has realized high-time,high-angular,and high-frequency resolution imaging of the Sun over an ultra-broadband frequency range.Each pair of MUSER antennas measures the complex visibility in the aperture plane for each integration time and frequency channel.The corresponding radio image for each integration time and frequency channel is then obtained by inverse Fourier transformation of the visibility data.However,the phase of the complex visibility is severely corrupted by instrumental and propagation effects.Therefore,robust calibration procedures are vital in order to obtain high-fidelity radio images.While there are many calibration techniques available—e.g.,using redundant baselines,observing standard cosmic sources,or fitting the solar disk—to correct the visibility data for the above-mentioned phase errors,MUSER is configured with non-redundant baselines and the solar disk structure cannot always be exploited.Therefore it is desirable to develop alternative calibration methods in addition to these available techniques whenever appropriate for MUSER to obtain reliable radio images.In the case where a point-like calibration source contains an unknown position error,we have for the first time derived a mathematical model to describe the problem and proposed an optimization method to calibrate this unknown error by studying the offset of the positions of radio images over a certain period of the time interval.Simulation experiments and actual observational data analyses indicate that this method is valid and feasible.For MUSER’s practical data the calibrated position errors are within the spatial angular resolution of the instrument.This calibration method can also be used in other situations for radio aperture synthesis observations.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第10期202-216,共15页 天文和天体物理学研究(英文版)
基金 supported by NSFC grants(11790301,11790305,11773043,U2031134,and 12003049) the National Key R&D Program of China(2021YFA1600500,2021YFA1600503,and 2018YFA0404602) supported by the National Major Scientific Research Facility Program of China with the Grant No.ZDYZ2009-3 The MUSER calibration system is a part of the Chinese Meridian Project funded by China’s National Development and Reform Commission。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部