期刊文献+

不同涡流发生器参数对潮流能水轮机翼型水动力学特性影响研究 被引量:3

INFLUENCE OF DIFFERENT VORTEX GENERATOR PARAMETERS ON HYDRODYNAMIC CHARACTERISTICS OF TIDAL CURRENT TURBINE HYDROFOIL
下载PDF
导出
摘要 将涡流发生器(VGs)流动控制理论引入到水轮机叶片设计领域,开展涡流发生器对潮流能水轮机叶片流动分离效应的抑制机理及水动力学特性研究。以NACA4418翼型为研究对象,分别建立基础翼型段和带VGs翼型段的潮流能水轮机翼型三维模型,应用CFD方法研究不同VGs排布方式、间距、高度以及长度参数对翼型段水动力性能的影响。结果表明:翼型段上安装VGs能有效减缓流动分离,合理的VGs排布方式可有效提高翼型的最大升力系数,正向排布优于反向排布,VGs间距为25 mm、高度为5 mm、长度为17 mm时对翼型段改善效果最佳,各组带VGs翼型最大阻力系数都增大约5%,翼型整体性能上升。利用水槽试验的方法验证仿真模型的准确性。此外,通过对翼型段进行二维流场分布以及VGs背流侧进行静压分布研究,进一步揭示VGs的作用机理。 In this paper,the flow control theory of vortex generators(VGs)is introduced into the field of turbine blade design,and the inhibition mechanism and hydrodynamic characteristics of vortex generators(VGs)on flow separation effect of tidal current turbine hydrofoil are studied. NACA4418 hydrofoil is taken as the research object,the three-dimensional models with VGs and without VGs are established respectively. The effects of different parameters of VGs,such as VG arrangement,spacing,height and length,on the hydrodynamic performance of NACA4418 hydrofoil are studied by CFD method. The results show that VGs can effectively suppress the flow separation and improve the maximum lift coefficient of hydrofoil. The performance of forward VG arrangement is better than that of the reverse arrangement. The best improvement effect is obtained when the distance between VGs is 25 mm,the height is 5 mm and the length is 17 mm. Although the maximum drag coefficient of each hydrofoil with VGs is increased by about 5%,the overall performance of hydrofoil is increased. The accuracy of the simulation results is verified by flume tests. In addition,two-dimensional flow field distribution around hydrofoil section and static pressure distribution on VG’s backflow side are studied to further reveal the mechanism of VGs.
作者 者浩楠 刘永辉 谭俊哲 司先才 袁鹏 王树杰 Zhe Haonan;Liu Yonghui;Tan Junzhe;Si Xiancai;Yuan Peng;Wang Shujie(College of Engineering,Ocean University of China,Qingdao 266100,China;Ocean Engineering Key Laboratory of Qingdao,Qingdao 266100,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第10期350-356,共7页 Acta Energiae Solaris Sinica
基金 山东省自然科学基金(ZR2021ME095) 国家重点研发计划(2018YFB1501903) 山东省重点研发计划(2019GGX103012)。
关键词 流动分离 数值模拟 水槽试验 潮流能 涡流发生器 叶片翼型 flow separation numerical simulation flume experiment tidal current energy vortex generators(VGs) blade hydrofoil
  • 相关文献

参考文献5

二级参考文献43

  • 1杨瑞,马超善,方亮,田楠,郭瑞,郝宗卿.加装叶片涡流发生器对变桨距风力机功率的影响[J].兰州理工大学学报,2019,45(6):64-68. 被引量:3
  • 2倪亚琴.涡流发生器研制及其对边界层的影响研究[J].空气动力学学报,1995,13(1):110-116. 被引量:32
  • 3张进,张彬乾,阎文成,段卓毅,陈迎春,焦予秦,于新.微型涡流发生器控制超临界翼型边界层分离实验研究[J].实验流体力学,2005,19(3):58-60. 被引量:25
  • 4刘刚,刘伟,牟斌,肖中云.涡流发生器数值计算方法研究[J].空气动力学学报,2007,25(2):241-244. 被引量:38
  • 5Stack J P, Mangalam S M. Method and apparatus for detecting laminar flow separation and reattachment. United States Patent No.4936146, 1990.
  • 6Shan H, Jiang L, Liu C, et al. Numerical study of passive and active flow separation control over a NACA0012 airfoil. Computers & Fluids 2008; 37(8): 975-992.
  • 7Godard G, Stanislas M. Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerospace Science and Technology 2006; 10(3): 181-191.
  • 8Betterton J G, Hackett K C, Ashill P R, et al. Laser Doppler anemometry investigation on subboundary layer vortex generators for flow control. 10th Interna- tional Symposium on Applications of Laser Technol- ogy to Fluid Mechanics. 2000; 10-12.
  • 9Wheeler G O. Low drag vortex generators. United States Patent No.5058837,1989.
  • 10Pauley W R, Eaton J K. Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA Journal 1988; 26(7): 816-823.

共引文献23

同被引文献29

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部