期刊文献+

数学物理方程离散特征值问题的几何网格因式分解算法 被引量:1

ON FACTORIZATION ALGORITHM WITH GEOMETRIC PREPROCESSING FOR DISCRETE EIGEN-PROBLEMS IN MATHEMATICAL-PHYSICS
原文传递
导出
摘要 本文提出求解数学物理方程大型离散特征值问题的几何网格预变换块因式分解算法(简称GPA算法)通过长期研究我们发现:结构化网格矩阵G满足幂等方程G^(m)=I_(N),(m<N=dim(G)),故可在实数域或复数范围内进行因式分解;且G与有限元刚度矩阵A之间乘法存在互易性:A·G=G·A,利用G的几何不变性可把N阶大型矩阵A正交分解为m一块对角块矩阵异步并行是我们算法的计算数学基础。本文以正三角形、方形、平行六边形及正十七边形等结构化网格为例,特别是详细分析了六边形上的离散特征值异步并行算法及程序实现细节.文后附有若干2-3万阶量级离散矩阵特征值的桌面电脑数值计算例子(正三角形与方形网格,串行加速比分别为3-4倍),符合本文算法分析得出的“几何网格预处理的并行度与正多边形边数成正比”的结论.这类几何网格因式分解算法原则上可推广到三维乃至高维数学物理方程离散特征值计算问题,也可用于大型线性方程组的高效并行求解. A geometric asynchronous parallel algorithm for solving large-scale discrete mathematicalphysical system with structured mesh is presented.By using the intrinsic geometry symmetry,geometric matrix G and the stiff matrix A satisfies reciprocal operator A·G=G.A,which G satisfies G^(m)=I,large scale system solvers can be replaced to block-solver as a.pretreatment.In this paper,we restrict ourselves to arbitrarily regular polygon mesh,such as triangle,square,hexagon,as well as heptadecagon.Mathematical analysis and numerical tests are included.The pretreatment algorithm has been extended to 3-D structured grid,such as cube,dodecahedron,icosahedron.
作者 孙家昶 Sun Jiachang(Laboratory of Parallel Software and Computational Science,Institute of Software,Chinese Academy of Sciences,Beijing 100080,China)
出处 《计算数学》 CSCD 北大核心 2022年第4期433-465,共33页 Mathematica Numerica Sinica
基金 国家重点研发计划高性能计算重点专项(2016YFB0200601) 中国科学院软件研究所基础研究项目资助.
关键词 数理方程离散特征值 互易算子 几何块预处理子 特征值问题因式分解 异步并行算法 Mathematical-physical discrete eigenvalue problems Reciprocal operator Geometrypre-processing Factorization Parallel algorithm
  • 相关文献

参考文献7

二级参考文献32

  • 1SUN Jiachang CAO Jianwen.Large scale petroleum reservoir simulation and parallel preconditioning algorithms research[J].Science China Mathematics,2004,47(z1):32-40. 被引量:4
  • 2LAI JunJiang1,HUANG JianGuo2,3,& SHI ZhongCi4 1Department of Mathematics,Minjiang University,Fuzhou 350108,China,2Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China,3Division of Computational Science,E-Institute of Shanghai Universities,Shanghai Normal University,Shanghai 200234,China,4Institute of Computational Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China.A lumped mass finite element method for vibration analysis of elastic plate-plate structures[J].Science China Mathematics,2010,53(6):1453-1474. 被引量:1
  • 3DAI Xiaoying,YANG Zhang,ZHOU Aihui.Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions[J].Science China Mathematics,2008,51(8):1401-1414. 被引量:3
  • 4Li H, Sun J, Xu Y. Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle [J]. SIAM J. Numer. Anal. 2008, 46: 1653-1681.
  • 5Peter, Li and Shing-Tung Yau. On the SchrSdinger equation and the Eigenvalue problem[J]. Comm. Math. Phys., 1983, 88: 309-318.
  • 6Pinsky Mark A. The eigenvalues of an equilateral triangle[J]. SIAM J. Math. Anal., 1980, 11: 819-827.
  • 7Pinsky Mark A. Completeness of the eigenfunctions of the equilateral triangle[J]. SIAM J. Math. Anal., 1985, 16: 848-851.
  • 8Milan Prager. An investigation of eigenfunctions over the equilateral triangle and square[J]. Applications of mathematics, 1998, 43: 311-320.
  • 9McCartin B J. Eigenstructure of the equilateral triangle. I. The Dirichlet problem[J]. SIAM Rev., 2003, 45: 267~287.
  • 10Sun Jiachang and Li Huiyuan. Generalized Fourier transform on an arbitrary tirangular domain[J]. Advances in Computational Mathematics, 2005, 2: 223-248.

共引文献10

同被引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部