摘要
针对带跳随机波动率模型满足的偏积分微分方程,提出一种新的高阶交替方向隐式(ADI)有限差分格式,该模型是一个具有混合导数和非常数系数的对流扩散型初边值问题.我们将不同的高阶空间离散与时间步ADI分裂格式相结合,得到了一种空间四阶精度、时间二阶精度的有效方法,并采用Fourier方法分析了高阶ADI格式的稳定性.最后,通过对欧式看跌期权定价模型进行数值实验证实了数值方法的高阶收敛性。
For the partial integro-differential equations satisfied by the stochastic volatility model with jump,a new high-order alternating direction implicit(ADI)finite difference scheme is proposed.The model is a convection diffusion type initial boundary value problem with mixed derivatives and non constant coefficients.We combine different high-order spatial discretization with the time-step ADI splitting scheme proposed by Hundsdorfer and Verwer,and obtain an effective method with fourth-order accuracy in space and second-order accuracy in time,and analyze the stability of high-order ADI scheme by Fourier method.Finally,the higher-order convergence of the numerical method is verified by numerical experiments on the European put option pricing model.
作者
陈迎姿
肖爱国
王晚生
Chen Yingzi;Xiao Aiguo;Wang Wansheng(School of financial mathematics and statistics,Guangdong University of Finance,Guangzhou510521,China;School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China;College of Mathematics&Science,Shanghai Normal University,Shanghai 200234,China)
出处
《计算数学》
CSCD
北大核心
2022年第4期466-480,共15页
Mathematica Numerica Sinica
基金
国家自然科学基金青年项目(12101141)
国家自然科学基金项目(12271367,1207140311771060)
上海市科技计划项目(20JC1414200)
上海市自然科学基金项目(20ZR1441200)资助。
关键词
高阶格式
交替方向隐式
随机波动率模型
期权定价.
high order scheme
alternating direction implicit
stochastic volatility model
option pricing