期刊文献+

电动汽车无线充电阻抗匹配研究 被引量:3

Research on Impedance Matching of Wireless Charging System for Electric Vehicle
下载PDF
导出
摘要 为使不同阻值的负载在充电时都能维持较高效率,提出在负载端接入双管buck-boost变换器,通过调节变换器占空比使等效负载阻值始终等于系统最优负载阻值,实现最大效率追踪。同时设定期望输出功率,根据不同的负载阻值计算出对应的输出电压并给到控制器作为参考电压,通过闭环移相控制调节逆变器的移相角,稳定地输出对应电压,从而实现恒功率控制。仿真结果表明,当负载阻值在10~40Ω变化时,系统传输效率均能维持在85%且稳定输出4 200 W的功率。 In order to maintain high transmission efficiency when different loads are being charged, a dual-switch buck-boost conventer is proposed at the load end. By adjusting the duty cycle of the converter, the equivalent load resistance can be always equal to the optimal load resistance to achieve maximum efficiency. And the expected output power value is set, the corresponding output voltage according to different load resistance is calculated sending to the controller as a reference voltage, the phase shift angle of the inverter is adjusted through closed-loop phase shift control, and output the corresponding voltage stably realizing constant power control.The simulation shows that the transmission efficiency remains constant at 85% and the output power remains constant at 4 200 W when the load resistance varys between 10~40 Ω.
作者 付光杰 毛远志 FU Guangjie;MAO Yuanzhi(School of Electrical Information and Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《吉林大学学报(信息科学版)》 CAS 2022年第5期727-733,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(51474069)。
关键词 阻抗匹配 双管buck-boost变换器 占空比 移相控制 恒功率控制 impedance matching dual-switch buck-boost converter duty cycle phase shift control constant power control
  • 相关文献

参考文献10

二级参考文献148

  • 1曾小华,王振伟,宋大凤,陈琴琴,杨南南.基于多岛遗传算法的功率分流式双模混合动力客车参数优化[J].机械工程学报,2020,56(2):98-105. 被引量:19
  • 2薛明,杨庆新,李阳,张献,刘维娜.磁耦合谐振式无线电能传输系统负载特性研究(英文)[J].电工技术学报,2013,28(S2):28-34. 被引量:9
  • 3孙跃,王智慧,戴欣,苏玉刚,李良.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59. 被引量:112
  • 4Ren X, Ruan X, Qian H, et al. Three-mode dual-frequency two-edge modulation scheme for four-switch Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 499-509.
  • 5Yao C, Ruan X, Wang X. Isolated Buck-Boost dc-dc converters suitable for wide input-voltage range[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2599-2613.
  • 6Huang P C, Wu W Q, Ho H H, et al. Hybrid Buck-Boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 719-730.
  • 7Lee Y J, Khaligh A, Chakraborty A, et al. A compensation technique for smooth transitions in a noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 1002-1016.
  • 8Lee Y J, Khaligh A, Chakraborty A, et al. Digital combination of Buck and Boost converters to control a positive Buck-Boost converter and improve the output transientsr[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1267-1279.
  • 9Sahu B, Rincon-Mora G A. A low voltage, dynamic, noninverting, synchronous Buck-Boost converter for portable applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 443-452.
  • 10Qu H, Zhang Y, Yao Y, et al. Analysis of Buck-Boost converter for fuel cell electric vehicles[C]//IEEE International Conference on Vehicular Electronics and Safety. IEEE, 2006: 109-113.

共引文献248

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部