期刊文献+

基于特征优选的航空发动机剩余寿命预测 被引量:1

Prediction of remaining useful life for aero engine based on feature optimization
下载PDF
导出
摘要 研究针对航空发动机剩余寿命预测中的特征选择问题,提出一种基于特征优选的航空发动机剩余寿命预测方法。首先,基于长短时记忆网络建立单序列监测数据预测模型,预测不同工况下发动机测试样本的数据集。其次,基于特征融合与相似性匹配法,计算剩余寿命预测评价指标,并基于非劣分层遗传算法进行特征优选。最后,对基于特征优选的剩余寿命预测效果进行验证,结果表明:(1)在同一非劣层中,随着特征数量的增加,剩余寿命评价指标会先变优,再变差。这种现象说明过多的特征数量会影响优化结果,证明特征优选的必要性。(2)以不同工况的样本集分别用于特征多目标优选和剩余寿命预测研究,其预测误差均值相差小于16%,表明所提方法的正确性和鲁棒性。 Aiming at the problem of feature selection in aeroengine remaining useful life prediction,a method of aeroengine remaining useful life prediction based on feature optimization is proposed.First of all,based on the long-short-term memory network,a single sequence monitoring data prediction model is established to predict the data sets of engine test samples under different operating conditions.Secondly,The index of residual life prediction is calculated,and the feature optimization is carried out based on the non-dominated sorting genetic algorithm II.Finally,the effect of remaining useful life prediction based on feature optimization is verified,and the results show that:(1)In the same non-inferior layer,with the increasing number of features,the evaluation index of residual life first become better and then become worse.This phenomenon shows that the excessive number of features affect the optimization results and proves the necessity of feature optimization.(2)The sample sets of different working conditions are used in feature multi-objective optimization and remaining useful life prediction respectively,and the average difference of prediction error is less than 16%,indicating the correctness and robustness of the proposed method.
作者 李鹏 丁瀛 黄培炜 杜艺博 LI Peng;DING Ying;HUANG Peiwei;DU Yibo(School of Mechatronics&Vehicle Engineering,East China Jiaotong University,Nanchang 330013,China)
出处 《中国测试》 CAS 北大核心 2022年第11期27-33,共7页 China Measurement & Test
基金 国家自然科学基金(52165016) 江西省教育厅科技项目(GJJ210631)。
关键词 剩余寿命预测 特征优选 长短时记忆网络 NSGA-II remaining useful life prediction feature selection long short-term memory networks NSGA-II
  • 相关文献

参考文献6

二级参考文献44

共引文献77

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部