摘要
行程时间信息在交通管控中起着重要作用。车辆轨迹信息可以提供大规模路网行程时间数据。然而,由于轨迹数据的稀疏性,路网行程时间常出现数据缺失问题。为解决这一问题,构建一种生成对抗网络(GAN)模型。该模型通过拟合数据丰富路段的行程时间数据的概率分布,为数据缺失路段生成行程时间数据。利用滴滴出行轨迹数据进行了数值实验,结果表明GAN模型的数据补全能力优于对比方法。
Travel time information plays an important role in traffic control.Trajectory data from vehicles can provide large-scale travel time data of road network.However,due to the sparsity of trajectory data,the problem of missing data often occurs in road network travel time.In order to solve this problem,a Generative Adversarial Network (GAN) model is proposed.By fitting the probability distribution of travel time data from data rich links,the model generates travel time data for data missing links.The numerical experiments are carried out by using trajectory data from DiDi ChuXing,and the results show that the data imputation capability of GAN model is better than that of comparison methods.
作者
王怡茗
张钧硕
李阳
景荣荣
张坤鹏
WANG Yiming;ZHANG Junshuo;LI Yang;JING Rongrong;ZHANG Kunpeng(College of Electrical Engineering,Henan University of Technology,Zhengzhou 450001,China;State Grid Jiaozuo Power Supply Company,Jiaozuo 454000,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处
《现代信息科技》
2022年第21期88-90,共3页
Modern Information Technology
基金
国家自然科学基金资助项目(62002101)。
关键词
生成对抗网络
行程时间
数据补全
Generative Adversarial Network
travel time
data imputation