期刊文献+

低雷诺数下双元素翼帆翼型失速特性的数值研究 被引量:1

Numerical Simulation of Stall Characteristics of Two-Elements Wingsail Airfoil at Low Reynolds Number
下载PDF
导出
摘要 为了研究大型船舶在航行中双元素翼帆的失速特性,采用Transition SST湍流模型求解双元素翼帆翼型流场,进而分析双元素翼帆失速特性的变化规律。通过在襟翼偏转角增大时双元素翼帆的流动变化分析翼型表面流动分离的演化过程:随着襟翼偏转角的增大,助推力系数出现波动式增大,这是由于在多物理参数共同作用时,其中某一参数的变化会带来缝隙绕流的扰动,改变两个自由剪切层的相互作用,造成翼型失速或者改善流动。对于不同襟翼偏转角,在相对风向角为75°~105°内的助推力系数最大,侧推力系数也接近0值,属于最优相对风向角范围。因此双元素翼帆在工作中,当相对风向角改变而引起攻角变化时,为了获得最优推进系数,应先选择襟翼偏转角,再选择合适的攻角。 In order to study the stall characteristics of two-elements wingsail of merchant ships during navigation,the transition SST turbulence model is used to solve the airfoil flow field of two-elements wingsail,and the stall characteristics of two-elements wingsail are analyzed by numerical simulation.The evolution process of flow separation on the airfoil surface can be seen from the flow change of the two-elements wingsail airfoil when the flap deflection angle increases.With the increase of flap deflection angle,the thrust coefficient fluctuates and increases.This is because when multiple physical parameters act together,the change of one of them will bring disturbance to the flow around the gap.The interaction between two free shear layers also has been changed,causing airfoil stall or improving flow.For different flap deflection angles,the thrust coefficient is the largest in the range of 75°~105°relative wind angle,and the side thrust coefficient is close to 0.It belongs to the range of optimal relative wind angle.Therefore,when the angle of attack changes due to the change of relative wind direction,in order to obtain the optimal propulsion coefficient,the flap deflection angle should be selected first,and then the appropriate angle of attack should be selected.
作者 李臣 王宏明 孙培廷 LI Chen;WANG Hong-ming;SUN Pei-ting(Marine Engineering College,Dalian Maritime University,Dalian 116026,China;College of Marine Electrical and Intelligent Engineering,Jiangsu Maritime Institute,Nanjing 211170,China;Jiangsu Ship Energy Saving Engineering Technology Center,Nanjing 211170,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2022年第11期457-469,共13页 Journal of Propulsion Technology
基金 江苏省高等学校自然科学研究面上项目(20KJB580010) 千帆新锐项目(014070)。
关键词 双元素翼帆 襟翼偏转角 失速特性 助推力系数 数值模拟 Two-elements wingsail Flap deflection angle Stall characteristics Auxiliary thrust coefficient Numerical simulation
  • 相关文献

参考文献7

二级参考文献35

  • 1白鹏,崔尔杰,周伟江,李锋.翼型低雷诺数层流分离泡数值研究[J].空气动力学学报,2006,24(4):416-424. 被引量:26
  • 2袁新,徐利军,叶枝全,叶大均.水平轴风力机翼型大攻角分离流动的数值模拟[J].太阳能学报,1997,18(1):35-40. 被引量:21
  • 3Sirrahs D A,Hard M M,Fingersh L J,et al.Unsteady aerodynamics experiment phasesⅡ-Ⅳ teat configurations and available data campaigns[R].NREL Report:TP-500-25950,1999.
  • 4Yang S L,Chang Y L,Arici O.Navier-Stokes computa-tions of the NREL airfoil using a k-ω turbulent m-odel at high angles of attack[J].ASME Journal of Solar Energy Engineer ing,1995,117:304-310.
  • 5Spraglin W E. Flow Through Cascades in Tandem. NACA TN 2393, 1951.
  • 6Kemp N H, Sears W R. Aerodynamic Inter-Ference Between Moving Blade Wors. Journal of the Aeronautical Sciences, 1953, 20(9): 585-597.
  • 7HORTON H P. Laminar separation bubbles in two-and three-dimensional incompressible flow[D]. Lon- ton, UK: Univertisity of Lonton, 1968.
  • 8MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hyster- esis[J]. Journal of Aircraft, 1985, 22(9):763-770.
  • 9MAYDA E A, van DAM C P. Bubbleqndueed un- steadiness on a wind turbine airfoil[J] Solar Energy Engineering, 2002, 124(4) : 335-344.
  • 10YANO S L, CHANG Y L, ARICI O. Incompres- sible Navier-Stokes computation of the NREL airfoils using a symmetric total variational diminishing scheme[J]. Journal of Solar Energy Engineering, 1994, 169(4).. 174-182.

共引文献70

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部