期刊文献+

带混合保费和投资复合Poisson-Geometric风险模型的生存概率 被引量:1

The Survival Probability of an Poisson-Geometric Risk Model with Mixed Premium and Investment
下载PDF
导出
摘要 在考虑到保费收入和通货膨胀等随机因素的干扰以及保险公司将多余资本用于投资来提高其赔付能力的基础上,本文对经典风险模型进行了推广。首先,建立了混合保费收取下带投资和扰动的双复合Poisson-Geometric过程的双险种风险模型,随机保费收入服从复合Poisson过程,理赔过程服从复合Poisson-Geometric过程;其次,应用全期望公式,推导了该模型生存概率的积分微分方程;最后,当保费、理赔过程服从特定指数分布时,得到其满足的微分方程。 Taking into account the disturbance of random factors such as premium income and inflation, as well as the excess capital invested by insurance companies to improve their payability, the classical risk model is extended in this paper.Firstly, a double risk model with investment and perturbation is established under the mixed premium collection. The stochastic premium income follows the compound Poisson process, and the claims process follows the compound Poisson-Geometric process. Secondly, the integral differential equation of the survival probability of the model is derived by using the total expectation formula. Finally, when the premium and claim process obey a specific exponential distribution, the differential equation satisfied is obtained.
作者 黄鸿君 覃利华 HUANG Hongjun;QIN Lihua(School of Education Science,Guangxi Normal University for Nationalities,Chongzuo 532200,China;School of Mathematics,Physics and Electronic Information Engineering,Guangxi Normal University for Nationalities,Chongzuo 532200,China)
出处 《海南师范大学学报(自然科学版)》 CAS 2022年第3期260-267,共8页 Journal of Hainan Normal University(Natural Science)
基金 广西高校中青年教师科研基础能力提升项目(2021KY0767) 广西民族师范学院科研经费资助项目(2021YB054)。
关键词 复合POISSON-GEOMETRIC过程 生存概率 积分微分方程 混合保费 compound Poisson-Geometric process survival probability integral-differential equations mixed premium
  • 相关文献

参考文献10

二级参考文献70

共引文献135

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部