摘要
主蒸汽管道断裂(MSLB)事故威胁核电厂安全运行。本文基于时序深度学习模型预测核电厂非能动安全壳冷却系统(PCCS)在MSLB事故下关键安全参数随时间变化的瞬态响应。以瞬态安全参数为研究对象,数据通过线性归一化、特征标签分割预处理,使用短期数据集训练,采用长短时记忆网络(LSTM)和循环神经网络(RNN)建立单参量与多参量协同的时序深度学习模型;由多参量协同模型预测未经训练的长期数据集。研究表明:在同类事故、不同工况下,基于时序深度学习模型的预测具有适用性;基于训练短期数据来预测长期数据方法可行;使用LSTM的单参量模型或多参量协同模型的预测精度比RNN更高,基于LSTM深度学习模型能够有效、高精度快速预测MSLB事故下PCCS瞬态安全参数响应特性,可为事故安全分析提供快速预测分析。
The Main Steam Line Break(MSLB)accident threatens the safe operation of nuclear power plant.In this paper,the time-dependent transient response of key safety parameters of passive containment cooling system(PCCS)in nuclear power plant under MSLB accident is predicted based on time series deep learning model.The transient safety parameters are taken as the research objects.The data are preprocessed by linear normalization and feature label segmentation,trained by short-term data sets,and the time series deep learning model of single parameter and multi parameter coordination is established by using long short-term memory(LSTM)and recurrent neural network(RNN);long-term untrained data sets are predicted by a multi-parameter coordination model.The research shows that the prediction based on time series deep learning model is applicable under the same accident and different working conditions;it is feasible to predict long-term data based on short-term training data;the prediction accuracy of the single-parameter model or multi-parameter coordination model using LSTM is higher than that of RNN.The deep learning model based on LSTM can effectively,accurately and quickly predict the transient safety parameter response characteristics of PCCS under MSLB accidents,and can provide a fast prediction and analysis model for accident safety analysis.
作者
冯千懿
郭张鹏
李仲春
张家语
赵后剑
阮旸晖
玉宇
Feng Qianyi;Guo Zhangpeng;Li Zhongchun;Zhang Jiayu;Zhao Houjian;Ruan Yanghui;Yu Yu(Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy,North China Electric Power University,Beijing,102206,China;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2022年第6期79-84,共6页
Nuclear Power Engineering
基金
国家重点研发计划项目(2020YFB1901900)。