摘要
基于地理遥感图像UNet配准网络,改进了一种半监督对抗性与注意力机制相结合的UNet配准网络。该网络由提取特征的编码器和精确定位的解码器组成,解码部分通过相加操作融合来自编码器的信息,卷积层与池化层之间引入了空间注意力与通道注意力相结合,有效抑制地理遥感图像中无关的区域,突出显著地理超遥感特征,使用对抗性相似优化与空间变换相结合。利用地理遥感数据集对该方法进行实验,实验结果表明,该方法在配准精度与速度上都有较大的提升。
A UNet alignment network combining semi-supervised adversarial and attention mechanisms is improved based on the UNet alignment network for geographic remote sensing images.The network firstly consists of an encoder for extracting features and a decoder for precise positioning,and the decoding part fuses the information from the encoder by summation operation;secondly,spatial attention combined with channel attention is introduced between the convolution and pooling layers,which can suppress irrelevant regions in geographic remote sensing images and highlight significant geographic hyper-remote features;finally,adversarial similarity optimization combined with spatial transformation is used.The method is experimented using geographic remote sensing dataset,and the experimental results show that the method has a large improvement in alignment accuracy and speed.
作者
朱永振
刘丽婷
群诺
ZHU Yongzhen;LIU Liting;QUN Nuo(Tibet University,College of Information Science and Technology,Lhasa Tibet 850000,China)
出处
《信息与电脑》
2022年第17期86-89,共4页
Information & Computer
基金
国家自然科学基金(项目编号:62162057)
西藏大学珠峰学科建设计划项目(项目编号:zf22002001)。
关键词
地理遥感图像
U-Net配准网络
注意机机制
半监督对抗性
变换网络
geographic remote sensing images
UNet registration network
attention mechanism
semi-supervised adversariality
transformation network