期刊文献+

基于GAN-Attention-UNet的网络地理遥感图像配准

TGeo-Remote Sensing Image Registration Based on GAN-Attention-UNet Network
下载PDF
导出
摘要 基于地理遥感图像UNet配准网络,改进了一种半监督对抗性与注意力机制相结合的UNet配准网络。该网络由提取特征的编码器和精确定位的解码器组成,解码部分通过相加操作融合来自编码器的信息,卷积层与池化层之间引入了空间注意力与通道注意力相结合,有效抑制地理遥感图像中无关的区域,突出显著地理超遥感特征,使用对抗性相似优化与空间变换相结合。利用地理遥感数据集对该方法进行实验,实验结果表明,该方法在配准精度与速度上都有较大的提升。 A UNet alignment network combining semi-supervised adversarial and attention mechanisms is improved based on the UNet alignment network for geographic remote sensing images.The network firstly consists of an encoder for extracting features and a decoder for precise positioning,and the decoding part fuses the information from the encoder by summation operation;secondly,spatial attention combined with channel attention is introduced between the convolution and pooling layers,which can suppress irrelevant regions in geographic remote sensing images and highlight significant geographic hyper-remote features;finally,adversarial similarity optimization combined with spatial transformation is used.The method is experimented using geographic remote sensing dataset,and the experimental results show that the method has a large improvement in alignment accuracy and speed.
作者 朱永振 刘丽婷 群诺 ZHU Yongzhen;LIU Liting;QUN Nuo(Tibet University,College of Information Science and Technology,Lhasa Tibet 850000,China)
出处 《信息与电脑》 2022年第17期86-89,共4页 Information & Computer
基金 国家自然科学基金(项目编号:62162057) 西藏大学珠峰学科建设计划项目(项目编号:zf22002001)。
关键词 地理遥感图像 U-Net配准网络 注意机机制 半监督对抗性 变换网络 geographic remote sensing images UNet registration network attention mechanism semi-supervised adversariality transformation network
  • 相关文献

参考文献1

二级参考文献12

  • 1Brown L G.A Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24:325-376.
  • 2Zitová B,Flusser J.Image Registration Methods:A Survey[J].Imaging and Vision Computing,2003,21:977-1000.
  • 3Moigne J L,Campbell W J,Cromp R F.An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features[J].IEEE Trans.Geoscicence and Remote Sensing,2002,40(8):1849-1864.
  • 4Kennedy R E,Cohen W B.Automated Designation of Tie-points for Image-to-image Coregistration[J].International Journal of Remote Sensing,2003,24(17):3467-3490.
  • 5Bentoutou Y,Taleb N,Kpalma K,et al.An Automatic Image Registration for Application in Remote Sensing[J].IEEE Trans.Geoscience and Remote Sensing,2005,43(9):2127-2137.
  • 6Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 7Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8Brown M,Lowe D G.Recognising Panoramas[A].In Proceedings of the 9th International Conference on Computer Vision(ICCV03)[C].Nice,October,2003.
  • 9Schaffalitzky F,Zisserman A.Multi-view Matching for Unordered Image Sets,or How do I Organize my Holiday Snaps?[A].Proceedings of the 7th European Conference on Computer Vision(ECCV02)[C].2002.
  • 10Lindeberg T.Scale-Space Theory in Computer Vision[M].The Kluwer International Series in Engineering and Computer Science,Kluwer Academy Publishers,Dordrecht,Netherlands,1994.

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部