摘要
在互联网信息时代,文本数据呈指数增长,如何管理和分析海量的文本数据已经成为一项挑战。近年来,自然语言处理领域中的文本分类研究取得了很大突破。本文阐述了自然语言处理领域中研究文本分类任务中使用的方法及研究进展和成果,介绍了从传统机器学习到深度学习的文本分类任务中所使用的模型,并总结和展望了文本分类在自然语言处理领域的发展趋势。
In the internet information era,text data is growing exponentially,and it has become a challenging task to manage and analyze the huge amount of text data.In recent years,text classification research in the field of natural language processing has made great breakthroughs.In this paper,we describe the methods and research progress and results used in studying text classification tasks in the field of natural language processing,and introduce the models used in text classification tasks from traditional machine learning to deep learning.It also summarizes and outlooks the development trend of text classification in the field of natural language processing.
作者
郑宏春
黄筱
李娜
陈定甲
牙珊珊
ZHENG HongChun;HUANG Xiao;LI Na;CHEN Dingjia;YA Shanshan(College of Computer and Information Engineering,Nanning Normal University,Nanning Guangxi 530100,China)
出处
《信息与电脑》
2022年第17期189-191,共3页
Information & Computer
基金
广西研究生教育创新计划项目(项目编号:YCSW2022397)。
关键词
自然语言处理
文本分类
深度学习
natural language processing
text classification
deep learning