期刊文献+

基于微热管阵列的新型光伏热电系统性能研究 被引量:2

Performance of a novel photovoltaic-thermoelectric system based on micro-channel heat pipe array
下载PDF
导出
摘要 带微热管的光伏热电系统用在实际建筑中时,全年运行过程中会出现热电模块的冷热端不断变换时热量损失与浪费的情况。为解决这一问题,本文提出了一种利用三通阀切换热流方向的微热管,并比较了按时刻和按季节切换三通阀方向的2种模式。基于Simulink软件建立了该新型光伏热电系统的数值模型,根据全年运行过程中室内外温度变化不断切换三通阀方向来分析系统性能,同时与普通光伏热电系统进行了比较,结果表明,按时刻切换三通阀微热管的系统效率更高,可达18.75%。 In the actual application of the photovoltaic-thermoelectric system with micro-channel heat pipe in buildings,the heat loss and waste will occur when the hot and cold ends of the thermoelectric devices constantly change during the whole year's operation.In order to solve this problem,this paper proposes a kind of micro-channel heat pipe which uses a three-way valve to switch the direction of heat flow,and compares two modes of changing the direction of three-way valve by time and by season.Based on the Simulink software,a numerical model of the new type of photovoltaic-thermoelectric system is established.The system performance is analysed by changing the direction of three-way valve continuously according to the annual indoor and outdoor temperature,and is compared with the traditional photovoltaic-thermoelectric system at the same time.The results show that the system efficiency of changing the three-way valve by time is higher,reaching 18.75%.
作者 张桠熙 孟杉 朱娜 胡平放 雷飞 罗振宇 Zhang Yaxi;Meng Shan;Zhu Na;Hu Pingfang;Lei Fei;Luo Zhenyu(Huazhong University of Science and Technology,Wuhan;Beijing Institute of Geo-Engineering,Beijing)
出处 《暖通空调》 2022年第12期156-162,共7页 Heating Ventilating & Air Conditioning
基金 中央高校基本科研业务费资助项目“结合相变材料的光伏与热电联合发电的深入研究”(编号:2020JYCXJJ049)。
关键词 微热管 光伏 热电 三通阀 数值模型 micro-channel heat pipe photovoltaic thermoelectric three-way valve mathematic model
  • 相关文献

参考文献3

二级参考文献14

  • 1李强,宣益民.Convective heat transfer and flow characteristics of Cu-water nanofluid[J].Science China(Technological Sciences),2002,45(4):408-416. 被引量:30
  • 2Vorobiev Y, Gonzglez-Hernandez J, Vorobiev P, et al. Thermal-Photovoltaic Solar Hybrid System for Efficient Solar Energy Conversion [J]. Solar Energy, 2006, 80(2): 170-176.
  • 3Van Sark W G J H M. Feasibility of Photovoltaic- Ther- moelectric Hybrid Modules [J]. Applied Energy, 2011, 88(8): 2785-2790.
  • 4Najafi H, Woodbury K A. Modeling and Analysis of a Combined Photovoltaic-Thermoelectric Power Generation System [J]. Journal of Solar Energy Engineering, 2013, 135(3): 1-8.
  • 5Liao T J, Lin B H, Yang Z M. Performance Characteristics of a Low Concentrated Photovoltaic-Thermoelectric Hy- brid Power Generation Device [J]. International Journal of Thermal Sciences, 2014, 77:158- 164.
  • 6Deng Y, Zhu W, "Wang Y, et al. Enhanced Performance of Solar-Driven Photovoltaic Thermoelectric Hybrid Sys- tem in an Integrated Design [J]. Solar Energy, 2013, 88: 182 -191.
  • 7Yang D J, Yin H M. Energy Conw;rsion Effeciency of a Novel Hybrid Solar System for Photovoltaic, Thermoelec- tric, and Heat Utilization [J]. IEEE Transactions on En- ergy Conversion, 2011, 26(2): 662-670.
  • 8Sardarabadi M, Passandideh-Fard M, Heris S Z. Ex- perimental Investigation of the Effects of Silica/Water Nanofluid on PV/T (Photovoltaic Thermal Units) [J]. En- ergy, 2014, 66:264-272.
  • 9Chow T T, He W, Ji J. Hybrid Photovoltaic- Thermosyphon Water Heating System for Residential Ap- plication [J]. Solar Energy, 2006, 80(3): 298 -306.
  • 10Xuan Y M, Li Q. Investigation on Convective Heat Trans- fer and Flow Features of Nanofluids [J]. Journal of Heat Transfer, 2003, 125(1): 151-155.

共引文献20

同被引文献54

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部