期刊文献+

The 2‑Width of Embedded 3‑Manifolds

原文传递
导出
摘要 We discuss a possible definition for“k-width”of a closed d-manifold Md,and on embedding Md e↪ℝn,n>d≥k,generalizing the classical notion of width of a knot.We show that for every 3-manifold 2-width(M3)≤2 but that there are embeddings ei∶T3↪ℝ4 with 2-width(ei)→∞.We explain how the divergence of 2-width of embeddings offers a tool to which might prove the Goeritz groups Gg infinitely generated for g≥4.Finally we construct a homomorphismg∶Gg→MCG(#g S2×S2),suggesting a potential application of 2-width to 4D mapping class groups.
机构地区 Microsoft Research
出处 《Peking Mathematical Journal》 2022年第1期21-35,共15页 北京数学杂志(英文)
基金 funded by the"Microsoft Research","Aspen Center for Physics"and"UCSB".
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部