期刊文献+

A Geometric Depiction of Solomon–Tukachinsky’s Construction of Open Gromov–Witten Invariants

原文传递
导出
摘要 The 2016 papers of Solomon and Tukachinsky use bounding chains in Fukaya’s A∞-algebras to define numerical disk counts relative to a Lagrangian under certain regularity assumptions on the moduli spaces of disks.We present a(self-contained)direct geometric analogue of their construction under weaker topological assumptions,extend it over arbitrary rings in the process,and sketch an extension without any assumptions over rings containing the rationals.This implements the intuitive suggestion represented by their drawing and Georgieva’s perspective.We also note a curious relation for the standard Gromov–Witten invariants readily deducible from their work.In a sequel,we use the geometric perspective of this paper to relate Solomon–Tukachinsky’s invariants to Welschinger’s open invariants of symplectic sixfolds,confirming their belief and Tian’s related expectation concerning Fukaya’s earlier construction.
作者 Xujia Chen
出处 《Peking Mathematical Journal》 2022年第2期279-348,共70页 北京数学杂志(英文)
基金 Supported by NSF Grant DMS 1901979。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部