摘要
该文研究一类半线性时间分数阶扩散-波动方程的柯西问题,基于线性问题的L^(r)-L^(q)估计,通过整体迭代法,在小初值的情况下研究非线性项指数对于解的整体存在性影响,在指数满足一定条件的情况下证明了整体解的存在唯一性.
The purpose of this paper is to study the Cauchy problem of a class of semilinear time fractional diffusion-wave equations.Based on the L^(r)-L^(q) estimates obtained from the corresponding linear problem,and combined with the global iteration method,the influence of the exponential of the nonlinear term on the global existence of the solutions is studied with small data,the existence and uniqueness of global solutions are proved under certain conditions of exponential.
作者
何鑫海
刘梅
杨晗
He Xinhai;Liu Mei;Yang Han(School of Mathematics,Southwest Jiaotong University,Chengdu 611756)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2022年第6期1705-1718,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(11701477,11971394)。
关键词
时间分数阶扩散-波动方程
柯西问题
小初值
整体解
Time fractional diffusion-wave equation
Cauchy problem
Small data
Global solution