摘要
设 {ξ_(i(}^(n)_(i=1)为独立同分布的随机变量,且P(ξ_(i)=1)=P(ξ_(i)=−1)=1/2.设a→=(a_(1),…,a_(n))为与{ξ_(i)}_(i=1)^(n)独立的服从超球面S^(n−1)={(a_(1),…,a_(n))∈R^(n)|∑_(i=1)^(n)a_(i)^(2)=1}上均匀分布的随机变量,该文用极坐标变换得到了P(|∑_(i=1)^(n)a_(i)ξ_(i)|≤1)的表达式.当n≤7时,该文通过直接计算得到此概率值大于等于1/2;当n≥8时,该文通过R软件也得到了此概率值大于等于1/2.特别地,n=3,4时,借助于贝塔函数,该文直接证明了该概率值大于等于1/2.
Let ξ_(i)(1≤i≤n)be independent identically distributed random variables satisfyingP(ξ_((i)=1)=P(ξ_(i)=−1)=1/2.Let a→=(a_(1),…,a_(n))be random variables uniformly distributed on S^(n−1)={(a_(1),…,a_(n))∈R^(n)|∑_(i=1)^(n)a_(i)^(2)=1} which are independent ofξ_(i)(1≤i≤n).In this paper,we get the expression of P(|∑_(i=1)^(n)a_(i)ξ_(i)|≤1)by polar coordination transformation.For n≤7,we give the value of P(|∑_(i=1)^(n)a_(i)ξ_(i)|≤1)directly which is no less than one half.For n≥8,we can use R software to calculate the value which is also no less than one half.Moreover,for n=3,4,by Beta function,we show that the probability value is still no less than one half.
作者
马丽
叶柳
Ma Li;Ye Liu(Key Laboratory of Data Science and Smart Education,Ministry of Education,Hainan Normal University,Haikou 571158;Department of Mathematics and Statistic,Hainan Normal University,Haikou 571158)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2022年第6期1782-1789,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(11861029)
海南省自然科学基金(122MS056,120RC589)
海南省研究生创新科研课题(Ohys2021-301)。
关键词
独立同分布随机变量
加权和
概率估计
Independent identically distributed random variable
Weighted sum
Probability estimation