摘要
针对常规的粒子群算法(particle swarm optimization algorithm, PSO)在应用中存在数据波动大、数据精确采集难度高和追踪速度慢等问题,课题组提出了基于卡尔曼滤波和改进粒子群优化算法的光伏最大功率点跟踪(maximum power point tracking, MPPT)控制器技术,并结合卡尔曼滤波、恒定电压和冒泡排序等方法进行优化。实验结果表明课题组提出的算法可以快速、准确地跟踪到最大功率点,提高了MPPT的响应速度和精度,提高了光伏发电的利用效率。
Aiming at the problems of large data fluctuation, high difficulty in accurate data collection and slow tracking speed in the application process of particle swarm optimization algorithm, the maximum power point(MPPT) controller was proposed based on Kalman filter and improved particle swarm optimization algorithm.Optimization was carried out combined with Kalman filtering, constant voltage method, bubble sorting and other methods. The experimental results show that the proposed method can quickly and accurately track the maximum power point, improve the response speed and response accuracy of MPPT, and improve the utilization efficiency of photovoltaic power generation.
作者
潘海鹏
李明华
雷建峰
林建豪
江先志
PAN Haipeng;LI Minghua;LEI Jianfeng;LIN Jianhao;JIANG Xianzhi(School of Mechanical and Automatie Control,Zhejiang Sdi-Tech Universily,Hangzhou 310018,China;Zhejiang TTN Flectrical Co.,Ltd.,Wenzbou,Zhejiang 325000,China)
出处
《轻工机械》
CAS
2022年第6期44-51,共8页
Light Industry Machinery
关键词
卡尔曼滤波
冒泡排序
恒定电压法
粒子群算法
最大功率点跟踪
Kalman filter
bubble sort
constant voltage method
particle swarm optimization algorithm
MPPT(Maximum Power Point Tracking)