期刊文献+

基于PSO的变模温吹塑模具电加热系统设计优化 被引量:3

Optimal Design of Electric Heating System in Variotherm Blow Mold by Particle Swarm Optimization
下载PDF
导出
摘要 模腔表面加热效率和加热均匀性是表征变模温模具热响应性能的两大关键技术指标,其取决于模具加热系统的设计。为获得优异的模具热响应性能,提出了一种集粒子群优化(PSO)和有限元方法(FEM)于一体的模具加热系统优化策略,并将该PSO-FEM方法应用于优化设计汽车扰流板变模温吹塑模具的电加热系统。结果表明,优化后模腔表面温度分布均匀性提高了53%,模腔表面最大温差从优化前的约20℃降低至优化后的9.4℃。基于优化设计参数构建了相应的扰流板吹塑模具,并进行了变模温吹塑成型实验。研究发现所成型扰流板的表面呈现均匀的镜面光泽,可直接满足装配要求,从而证明了PSO-FEM优化设计方法的有效性和变模温吹塑成型工艺在实际应用中的可行性。 Mold cavity surface heating efficiency and heating uniformity were two key technical indicators for evaluating the mold thermal response performance,which were mainly dependent on mold heating system design.To obtain excellent mold thermal response performance,a strategy approaching mold heating system optimization was proposed by combining the particle swarm optimization(PSO)and finite element method(FEM).This strategy was applied to optimize the electric heating system for a variotherm blow mold of automotive spoiler.And the results show that the mold cavity surface temperature distribution uniformity is improved by 53%,and the maximum temperature difference is decreased from the original value of 20℃to the optimized value of 9.4℃.Based on the obtained optimization design parameters,a prototype blow mold of spoiler is constructed and the variotherm blow molding experiments are conducted also.It is found that the automotive spoilers are manufactured by the variotherm blow molding exhibit uniform and high gloss appearance,which can satisfy the final assembly requirement directly.Thus,the effectiveness of PSO-FEM and the feasibility of application of variotherm blow molding technology in the practical production are demonstrated.
作者 肖成龙 黄汉雄 曾盛渠 XIAO Chenglong;HUANG Hanxiong;ZENG Shengqu(Department of Materials Science and Engineering,Hunan Institute of Technology,Hengyang 421002,China;Department of Mechanical Engineering,University of South China,Hengyang 421001,China;Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology,Guangzhou 510640,China)
出处 《塑料工业》 CAS CSCD 北大核心 2022年第11期95-100,共6页 China Plastics Industry
基金 湖南省自然科学基金面上项目(2022JJ30492,2020JJ4262) 湖南省教育厅优秀青年项目(19B484) 湖南工学院材料科学与工程学科开放基金(KFB22004)。
关键词 粒子群优化 变模温吹塑成型 电加热系统 表面质量 汽车扰流板 Particle Swarm Optimization Variotherm Blow Molding Electric Heating System Surface Quality Automotive Spoiler
  • 相关文献

参考文献2

二级参考文献27

  • 1李炯城,黄汉雄.一种新的快速BP神经网络算法——QLMBP[J].华南理工大学学报(自然科学版),2006,34(6):49-54. 被引量:14
  • 2何嘉松,王笃金,刘琛阳.聚合物加工与成型[M]∥《高速发展的中国化学》编委会.高速发展的中国化学:1982-2012.北京:科学出版社,2012.
  • 3Huang H X ,Liao C M. Prediction of parison swell in plastics extrusion blow molding using a neural network method [ J ]. Polymer Testing, 2002,21 ( 7 ) : 745- 749.
  • 4Huang H X,Liao C M. HDPE/PA6 blends:parison forma- tion behaviour in extrusion blow molding [ J ]. Polymer Testing, 2003,22 ( 5 ) : 509- 513.
  • 5Huang H X, Miau Y S. Finite element and neural network modeling of viscoelastic annular extrusion [ J ]. Journal of Fluids Engineering-Transactions of ASME,2007,129 (2) : 218-225.
  • 6Huang H X,Lu S. Modeling parison formation in extrusion blow mohling by neural networks [ J ]. Journal of Applied Polymer Science, 2005,96 (6) :2230- 2239.
  • 7Huang H X,Lu S. Neural modeling of parison extrusion in extrusion blow molding [ J ]. Journal of Reinforced Plastics and Composites ,2005,24 ( 10 ) : 1025-1034.
  • 8Huang H X,Li J C,Li D,et al. New strategies for predie- ring parison dimensions in extrusion blow molding [ J]. Polymer-Plastics Technology and Engineering, 2011,50 (13) :1329-1337.
  • 9Huang H X, Miao Y S, Li D. Numerical prediction and ex- perimental validation of viscoelastic annular swell [ J ]. Advances in Polymer Technology ,2006,25 ( 4 ) :259-269.
  • 10Huang H X, Huang G Q, Li J C, et al. Numerical simula- tion and experimental investigation on parison formation from a varying die gap in extrusion blow mnlding [ C ]// Annual Technieal Conference of Society of Plastics Engi- neers. Cincinnati: Society of Plastics Engineers, 2007: 2142-214-5.

共引文献7

同被引文献17

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部