期刊文献+

KF-96可溶镁合金溶解性能和机理

Solubility and Mechanism of KF-96 Soluble Magnesium Alloy
下载PDF
导出
摘要 节流器失效率高、打捞困难,严重影响了气井产气效率。采用可溶镁合金制作为节流器的关键零部件,在服役期过后使其自行溶解于地层水环境中,能够有效地稳定产气效率。采用SEM-EDS、SKPFM、腐蚀电化学等手段,从温度、压力和溶解时间对KF-96可溶镁合金溶解性能的影响进行了研究,并从腐蚀电化学的角度探讨了可溶镁合金的溶解机理。结果表明,合金中的第二相GdMg_(2)是其溶解性能提升的关键,温度和压力是影响可溶镁合金溶解速率的决定性因素,压力对溶解速率的影响更为显著。 The high failure rate of the choke and the difficulty in fishing seriously affect the gas production efficiency of the gas well.The use of soluble magnesium alloy as the key component of the throttle can effectively stabilize the gas production efficiency by making it self-dissolve in the formation water environment after the service life.The effects of temperature,pressure and dissolution time on the solubility of KF-96 soluble magnesium alloy were studied by means of SEM-EDS,SKPFM and corrosion electrochemistry,and the dissolution mechanism of the soluble magnesium alloy was discussed from the perspective of corrosion electrochemistry.The results show that the second phase GdMg_(2) in the alloy is the key to improve its solubility,temperature and pressure are the decisive factors affecting the dissolution rate of soluble magnesium alloys,and pressure has a more significant effect on the dissolution rate.
作者 汪雄雄 肖述琴 杨旭东 田伟 卫亚明 WANG Xiongxiong;XIAO Shuqin;YANG Xudong;TIAN Wei;WEI Yaming(Oil&Gas Technology Research Institute,Changqing Oil Filed Company,PetroChina,Xi′an 710021,China;State Engineering Laboratory for Exploration Development of Low-Permeability Oil and Gas Fields,Xi′an 710021,China)
出处 《有色金属工程》 CAS 北大核心 2022年第12期28-35,共8页 Nonferrous Metals Engineering
关键词 可溶镁合金 腐蚀 GdMg_(2) 溶解速率 soluble magnesium alloy corrosion GdMg_(2) dissolution rate
  • 相关文献

参考文献5

二级参考文献38

  • 1邓聪颖,何明格,赵秀粉,殷国富.基于锥阀的新型井下智能节流系统[J].四川大学学报(工程科学版),2013,45(S1):189-194. 被引量:1
  • 2张文亮,贺艳梅,孙豫红.天然气水合物研究历程及发展趋势[J].断块油气田,2005,12(2):8-10. 被引量:23
  • 3蒋代君,陈次昌,钟孚勋,伍超,唐刚.天然气井下节流临界状态的判别方法[J].天然气工业,2006,26(9):115-117. 被引量:22
  • 4Staiger M P, Pietak A M, Huadmai J,et al.. Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterial, 2006,27(9): 1728-1734.
  • 5Witte F. The history of biodegradable magnesium implants: A review[J]. Acta Biomaterialia, 2010,6(5): 1680-1692.
  • 6Muller W D, Nascimento M L, Zeddies M, et al.. Magnesium and its alloys as degradable biomaterials: corrosion studies usingpotentiodynamic and EIS electrochemical techniques[J]. Materials Research, 2007,10(1): 5-10.
  • 7Zeng R C, Dietzel W G, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials[J], Advanced EngineeringMaterials, 2008, 10(8): B3-B14.
  • 8Meirelles L, Arvidsson A, Andersson K P, et al.. Nano hydroxyapatite structures influence early bone formation[J]. J BiomedicalMatericals Research Partt A, 2008, 87(2): 299-307.
  • 9Rossi S, Tirri T, Paldan H, et al” Peri-implant tissue response to Ti02 surface modified implants[J]. Clin Oral Implants Res, 2008,19(4): 348-355.
  • 10Wang J, Chao Y, Wan Q, et al.. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition[J]. ActaBiomaterialia, 2009, 5(5): 1798-1807.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部