期刊文献+

算子函数的Weyl定理的判定

Judgement of Weyl's Theorem for Functions of Operators
原文传递
导出
摘要 Weyl定理反映了算子特征值的分布特点.运用新的谱集,给出了有界线性算子满足Weyl定理的新的判定方法进一步通过该谱集,刻画了算子函数满足Weyl定理的充要条件. Weyl's theorem can reflect the distribution characteristics of operator's eigenvalues.By using the newly defined spectrum set,the new judgements of Weyl's theorem for bounded linear operators are discussed.In addition,the necessary and sufficient conditions for operator functions satisfying Weyl's theorem are studied.
作者 黄小静 戴磊 孙晨辉 HUANG Xiao-jing;DAI Lei;SUN Chen-hui(School of Mathematics and Statistics,Weinan Normal University,Weinan 714099,China)
出处 《数学的实践与认识》 2022年第10期206-212,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11501419) 陕西省科技计划资助项目(2021JM-519) 渭南师范学院人才项目(2021RC02) 陕西省教育科学“十三五”规划2020年度青年课题资助项目(SGH20Q254)。
关键词 WEYL定理 算子函数 Weyl's theorem spectrum operator function
  • 相关文献

参考文献3

二级参考文献16

  • 1Weyl H., Uber beschrankte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo, 1909, 27: 373-392.
  • 2Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349:2115-2124.
  • 3Rakocevic V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34:915-919.
  • 4Rakocevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 5Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 2003, 69:379-391.
  • 6Grabiner S., Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 1982, 34(2): 317-337.
  • 7Saphar P., Contribution a l'etude des applications lineaires dans un espace de Banach, Bull. Soc. Math. France, 1964, 92: 363-384.
  • 8Kato D., Perturbation Theory for Linear Operator, New York: Springer-Verlag, 1966.
  • 9Goldberg S., Unbounded Linear Operators: Theory and Applications, New York: McGraw Hill, 1966.
  • 10Taylor A. E., Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann., 1966, 163: 18-49.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部